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Preface

Welcome to Introduction to Al and Machine Learning (23A1D205)

Welcome to 23AID205: Introduction to Al and Machine Learning! This course is designed to
be your foundational gateway into the exciting and rapidly evolving fields of Artificial Intelli-
gence (AI) and Data Science (DS). In an era where data is ubiquitous and intelligent systems
are transforming industries, a solid understanding of these domains is becoming increasingly
crucial for aspiring engineers and technologists.

This course material has been structured to provide you with a formal introduction, balancing
theoretical with practical, hands-on experience. We aim to demystify complex concepts and
equip you with the initial tools and techniques to start your journey in Al and Data Science.

Course Aims and Philosophy

The primary objectives of this course are:

e To introduce the fundamental concepts, history, and scope of Artificial Intelligence.

e To introduce the core principles and lifecycle of Data Science, including foundational
statistics.

o To familiarize you with essential tools and programming techniques used in Al and Data
Science.

Our teaching philosophy emphasizes a blend of theoretical lectures and practical lab sessions.
The L-T-P-C structure of 2-0-2-3 reflects this, with dedicated hours for both conceptual un-
derstanding and applied problem-solving using industry-relevant programming languages and
libraries.

What You Will Learn

Throughout this course, we will explore three core units:

1. Foundations of Al & Data Science: Delving into the history, core ideas, applications,
and career landscapes of both Al and Data Science.



2.

Intelligent Agents & Introduction to Statistics: Understanding the building blocks
of Al systems through intelligent agents and their environments, and laying the statistical
groundwork necessary for Data Science, covering concepts from sampling to descriptive
statistics.

. Tools, Processes, and Applications: Equipping you with basic tools (primarily

Python and its ecosystem), introducing the Data Science process pipeline, exploring
data representation and pre-processing, and touching upon elementary applications of
AT and Data Science.

You will gain hands-on experience with Python and key libraries such as NumPy for numerical
operations, Pandas for data manipulation, Matplotlib/Seaborn for visualization, and a gentle
introduction to Scikit-learn for basic machine learning tasks.

Learning Outcomes

Upon successful completion of this course, you will be able to:

CO1: Analyse different elements of an Al system.

CO2: Analyse different types of data representation.

CO3: Apply concepts of Al and Data Science to solve canonical problems.

CO4: Implement basic computational tools pertinent to Al and Data Science to solve
canonical problems.

Course Structure and Approach

The course is structured around weekly lectures that introduce new concepts, followed by lab
sessions designed to reinforce these concepts through practical exercises. Learning will be
assessed through a combination of:

Assignments: To apply learned concepts to specific problems.

Quizzes: To check understanding of key topics periodically.

Mid-Term Examination: To evaluate progress on the initial half of the course.
Term Project / End Semester Examination: A significant component allowing
you to apply your cumulative knowledge to a practical problem or a comprehensive
theoretical assessment.



A Note to Students

The study of AI and Data Science is an exciting endeavor. We encourage you to be curious,
ask questions, actively participate in discussions, and diligently work through the lab exercises
and assignments. The skills you develop in this course will serve as a strong foundation for
more advanced topics and potentially for your future career.

We hope you find this course engaging, challenging, and rewarding. Let’s explore the fascinat-
ing world of AT and Data Science together!




1 Introduction to the Course

Welcome to Introduction to Al and Machine Learning. This course is your first step into
understanding Artificial Intelligence and Data Science.

We’ll start by looking at what makes up an Al system. You’ll learn to identify the different
parts of Al, drawing on ideas from well-known texts like Russell and Norvig’s Artificial Intel-
ligence: A Modern Approach and Deepak Khemani’s A First Course in Artificial Intelligence.
This will help you analyze how these systems work (CO1).

Then, we’ll move into the world of data. You’ll learn about different ways data is represented
and how to make sense of it using basic statistics (CO2). We’ll cover how to describe data
and find simple patterns.

A key part of the course is learning to apply these Al and Data Science ideas to common
problems (CO3). You'll also get hands-on experience using basic computational tools, pri-
marily Python and its libraries, to actually work with data and build simple solutions (CO4).
Denis Rothman’s Artificial Intelligence by FExample will provide some practical illustrations
for this.

Throughout the course, we’ll balance learning the theory with practical lab work. By the
end, you should be comfortable analyzing basic Al systems and data, and be able to use
fundamental tools to tackle introductory problems in these exciting fields.



2 Unit 1: The Landscape of Al and Data
Science

This unit is designed to immerse you in the fundamental concepts, historical evolution, and the
wide-ranging impact of Artificial Intelligence (AI) and Data Science (DS). We will explore what
these fields entail, how they have developed over time, the core principles that underpin them,
their transformative applications across various industries, and the diverse career opportunities
they offer. By completing this unit, you will gain a comprehensive appreciation for the scope
of Al and DS and understand their synergistic relationship. Our discussions will often refer to
key texts such as “Artificial Intelligence: A Modern Approach” by Russell and Norvig (2016),
“A First Course in Artificial Intelligence” by Khemani (2013), and “Artificial Intelligence by
Example” by Rothman (2018) for practical illustrations.

2.1 History and Foundations of Al and Data Science

To truly grasp the essence of Al and Data Science, it’s crucial to understand their historical
context and the multidisciplinary foundations upon which they are built.

2.1.1 What is Artificial Intelligence?

Artificial Intelligence (Al) is a vast and dynamic field within computer science. Its central aim
is to create machines or software systems that exhibit capabilities typically associated with
human intelligence. These capabilities include learning from experience, reasoning logically,
solving complex problems, perceiving and understanding the environment (through senses
like vision or hearing), comprehending and generating human language, and making informed
decisions.

In their seminal work, Artificial Intelligence: A Modern Approach , Russell and Norvig (2016)
categorize Al endeavors along two dimensions: thought processes and reasoning versus behav-
tor, and fidelity to human performance versus adherence to an ideal concept of intelligence
(rationality). This leads to four primary perspectives on Al:

1. Thinking Humanly (The Cognitive Modeling Approach): This approach seeks to
build systems that think in the same way humans do. It involves delving into the internal
mechanisms of the human mind, often drawing from cognitive science and psychological



experiments. The success of such a system is judged by how closely its reasoning processes
mirror human thought processes when performing a similar task. An example would be
developing Al models that simulate human problem-solving strategies or memory recall.

2. Acting Humanly (The Turing Test Approach): The goal here is to create systems
that act like humans to such an extent that they are indistinguishable from a human
being. The benchmark for this is the Turing Test, proposed by Alan Turing. In this test,
a human interrogator engages in a natural language conversation with both a human and
a machine. If the interrogator cannot reliably distinguish the machine from the human,
the machine is said to pass the test and exhibit human-like behavior. This necessitates
capabilities such as natural language processing, knowledge representation, automated
reasoning, and machine learning. Modern sophisticated chatbots that aim for natural,
flowing conversations are examples of this approach.

3. Thinking Rationally (The “Laws of Thought” Approach): This perspective fo-
cuses on building systems that think logically or rationally, adhering to formal rules of
reasoning. It has strong roots in formal logic, as developed by philosophers and mathe-
maticians. The idea is to represent problems and knowledge in a logical formalism and
use inference rules (like syllogisms, e.g., “All students in 23AID205 are intelligent; John
is a student in 23AID205; therefore, John is intelligent”) to derive new, correct conclu-
sions. Automated theorem provers or systems based on logic programming exemplify
this approach.

4. Acting Rationally (The Rational Agent Approach): This is the most prevalent
approach in contemporary Al. It aims to build systems, known as rational agents, that
act to achieve the best possible (or best expected) outcome given the available infor-
mation and circumstances. An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon that environment through actuators. Ra-
tionality here means making decisions that maximize a defined performance measure.
This approach is more general than “thinking rationally” because correct logical infer-
ence is just one mechanism for achieving rational behavior; sometimes, quick, reflexive
actions can also be rational. For instance, a self-driving car making rapid decisions to
avoid an obstacle to ensure safety and reach its destination efficiently is acting rationally.
This course will often adopt the rational agent perspective, as it provides a powerful and
flexible framework for designing and analyzing intelligent systems.

2.1.2 A Brief History of Al

The aspiration to create artificial, intelligent entities has roots in ancient myths and philosoph-
ical ponderings. However, the formal scientific pursuit of Al is a more recent endeavor, with
a history marked by periods of fervent optimism and challenging setbacks. A brief history of
Al is shown in Figure 2.1.
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Figure 2.1: History of Al
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Early Seeds (Pre-1950s): Foundational ideas were laid by philosophers like Aristotle,
who codified forms of logical reasoning. Mathematicians such as George Boole devel-
oped symbolic logic. Visionaries like Charles Babbage and Ada Lovelace conceived of
programmable computing machines, setting the stage for future developments.

The “Birth” of AI (1956): The field was officially christened at the Dartmouth
Summer Research Project on Artificial Intelligence, organized by John McCarthy and
others. This landmark workshop brought together pioneers who shared the conviction
that “every aspect of learning or any other feature of intelligence can in principle be so
precisely described that a machine can be made to simulate it.”

Early Enthusiasm and Great Expectations (1950s-1970s): This era saw the de-
velopment of foundational Al programs. Newell and Simon created the Logic Theorist,
considered by many to be the first Al program, and later the General Problem Solver
(GPS). Arthur Samuel developed a checkers-playing program that could learn from ex-
perience. John McCarthy developed the LISP programming language, which became
a staple in Al research. There was a general belief that machines with human-level
intelligence were just around the corner.

The First “AI Winter” (Mid-1970s - Early 1980s): The initial optimism waned as
progress proved more difficult than anticipated. Early Al systems struggled to scale to
complex, real-world problems due to limitations in computational power, available data,
and the sheer complexity of tasks (the “combinatorial explosion” where the number of
possibilities grows exponentially). Consequently, funding significantly reduced.

Rise of Expert Systems (1980s): Al research found renewed vigor with the develop-
ment of expert systems. These systems were designed to capture the knowledge of human
experts in narrow, specific domains (e.g., MYCIN for medical diagnosis of blood infec-
tions, or XCON for configuring computer systems). These “knowledge-based systems”
achieved notable commercial success and demonstrated the practical value of Al

The Second “AI Winter” (Late 1980s - Early 1990s): Expert systems, while suc-
cessful, also faced limitations. They were often expensive to build, difficult to maintain
and update, and their knowledge was confined to very specific domains. The specialized
hardware and software they relied on also became less distinct from general computing.
The Rise of Machine Learning & Statistical AI (1990s - Present): A signifi-
cant paradigm shift occurred. Instead of attempting to manually codify all knowledge,
the focus moved towards creating systems that could learn patterns and rules directly
from data. This was fueled by the increasing availability of large datasets (“Big Data”)
and substantial improvements in computational power. Algorithms like neural networks
(which had earlier roots), support vector machines, and decision trees gained prominence.
Deep Learning Boom (2010s - Present): Within machine learning, a subfield known
as Deep Learning, which utilizes artificial neural networks with many layers (hence
“deep”), began to achieve remarkable breakthroughs. These successes were particularly
notable in complex tasks like image recognition (e.g., ImageNet competition), natural
language processing (e.g., advanced machine translation), and game playing (e.g., Deep-
Mind’s AlphaGo defeating world champion Go players).
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As Khemani (2013) discusses in A First Course in Artificial Intelligence , understanding
this historical trajectory—its triumphs, its challenges, and the evolution of its core ideas—is
essential for appreciating the current state and future potential of Al

2.1.3 Foundations of Al

Artificial Intelligence is inherently interdisciplinary, drawing crucial theories, tools, and per-
spectives from a wide array of other fields. Russell and Norvig (2016) (Chapter 1) provide a
comprehensive overview of these contributions:

Philosophy: Philosophy has grappled with fundamental questions about knowledge,
reasoning, the nature of mind, consciousness, and free will for millennia. Formal logic,
initially developed by philosophers, provides a precise language for representing knowl-
edge and reasoning. Ethical considerations, increasingly important in Al, also stem from
philosophical inquiry.

Mathematics: Mathematics provides the formal toolkit for AI. Logic (propositional
and first-order) is used for knowledge representation and reasoning. Probability the-
ory and statistics are fundamental for dealing with uncertainty and for learning from
data. Calculus and linear algebra are essential for many machine learning algorithms,
particularly in optimization and the workings of neural networks.

Economics: Economics, particularly microeconomics, contributes concepts like utility
(a measure of desirability) and decision theory, which formalize how to make rational
choices among alternatives, especially under uncertainty. Game theory, which analyzes
strategic interactions between rational agents, is also relevant for multi-agent Al systems.
Neuroscience: Neuroscience is the study of the human brain and nervous system.
While AI does not strictly aim to replicate the brain’s biological mechanisms, neuro-
science offers inspiration for AI architectures. For example, artificial neural networks,
a cornerstone of deep learning, are loosely inspired by the structure and function of
biological neurons.

Psychology: Psychology, especially cognitive psychology, investigates how humans
think, perceive, learn, and behave. Models of human problem-solving, memory, and
language processing developed by psychologists can inform the design of Al systems that
aim to mimic these capabilities or interact more naturally with humans.

Computer Engineering: The practical realization of Al depends critically on computer
hardware. Advances in computer engineering—faster processors, larger memory capaci-
ties, parallel computing architectures, and specialized hardware like Graphics Processing
Units (GPUs) optimized for deep learning computations—have been indispensable for
AT’s progress.

Control Theory and Cybernetics: Control theory deals with designing systems that
can operate autonomously and maintain stability in dynamic environments. Cybernetics,
a broader field, studies regulatory systems and communication in animals and machines.
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These fields contribute principles for designing robots and autonomous agents that per-
ceive their environment and adjust their actions to achieve goals.

e Linguistics: Linguistics is the scientific study of language, its structure, meaning, and
context. Al systems that aim to understand, interpret, or generate human language (a
field known as Natural Language Processing or NLP) rely heavily on theories and models
from linguistics.

2.1.4 What is Data Science?

Data Science is a multidisciplinary field dedicated to extracting meaningful knowledge, insights,
and understanding from data in its various forms—be it structured (like organized tables in
a database), semi-structured (like JSON or XML files), or unstructured (like text documents,
images, audio, or video). It is not just about data, but about the science of working with
data.

Data Science typically involves a blend of:

e Scientific Methods: This includes formulating hypotheses about the data, designing
methods to test these hypotheses, and rigorously evaluating the results.

¢ Processes and Algorithms: It employs systematic procedures for collecting raw data,
cleaning and preparing it for analysis (a crucial and often time-consuming step), exploring
the data to uncover initial patterns, applying analytical and statistical algorithms to
model the data, and interpreting the outcomes.

e Systems and Tools: This refers to the computational infrastructure, programming
languages (like Python and R), databases, and software libraries necessary to store,
manage, process, and analyze (often very large) datasets.

The core components that often come together in Data Science practice are:

e Statistics: Provides the theoretical framework for making inferences from data, quan-
tifying uncertainty, designing experiments, and developing models.

e« Computer Science: Offers expertise in programming, data structures, algorithm de-
sign, database management, and machine learning.

e Domain Expertise: A deep understanding of the specific subject area from which the
data originates (e.g., biology, finance, marketing) is vital. This allows a data scientist
to ask relevant questions, correctly interpret the data and model outputs, and translate
insights into actionable strategies for that domain.

The ultimate aim of Data Science is often to facilitate data-driven decision-making within
organizations and to create data products, which are applications or systems that leverage
data to provide value (e.g., a recommendation engine in an e-commerce site or a predictive
model for equipment failure).
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2.1.5 Relationship: Al, Machine Learning (ML), Deep Learning (DL), and Data
Science

It’s common to hear these terms used interchangeably, but they represent distinct, albeit
closely related, concepts with a generally hierarchical relationship as shown in Figure 2.2.

Artificial Intelligence

D

Machine Learning

N

Deep Learning

Data Science:
Interdisciplinary Field

Figure 2.2: Relationship: AI, ML, DL and DS.

o Artificial Intelligence (AI): As previously defined, Al is the overarching scientific and
engineering discipline focused on creating machines and software that exhibit intelligent
behavior. It’s the broadest umbrella term.

o Machine Learning (ML): Machine Learning is a subfield of Al It is an approach to
achieving Al, where systems are not explicitly programmed for a specific task but instead
learn from data. An ML algorithm is fed data, and it identifies patterns, learns rules, or
makes predictions based on that data, improving its performance over time with more
data or experience.

o Deep Learning (DL): Deep Learning is a specialized subfield within ML. It utilizes a
class of ML algorithms called artificial neural networks, specifically those that are “deep,”
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meaning they have multiple layers of interconnected processing units. These layers allow
the network to learn hierarchical representations of data, making DL particularly effective
for complex tasks involving large amounts of unstructured data, like image recognition
or natural language understanding.

Data Science (DS): Data Science is an interdisciplinary field that encompasses a wide
range of activities related to extracting knowledge and insights from data. While AI,
ML, and DL are powerful tools and techniques used extensively within Data Science, DS
itself is broader. It includes the entire lifecycle of working with data: from problem
formulation and data collection, through data cleaning and pre-processing, exploratory
data analysis, modeling (which often involves ML/DL), to interpretation, visualization,
and communication of results to drive decisions.

2.1.6 Applications of Al and Data Science

The influence of Al and Data Science is pervasive, revolutionizing industries and reshaping our
daily experiences. Their applications are diverse and continually expanding. Rothman (2018)
provides numerous code-based illustrations of such applications. Here are some prominent
examples:

e Healthcare:

— Medical image analysis: Al algorithms, particularly deep learning models, analyze
medical images like X-rays, CT scans, and MRIs to detect anomalies such as tumors,
fractures, or signs of diseases like diabetic retinopathy, often assisting radiologists
by improving speed and accuracy.

— Drug discovery and development: Machine learning models can predict the potential
efficacy and side effects of new drug candidates by analyzing vast molecular and
biological datasets, thereby accelerating the traditionally long and expensive drug
discovery process.

— Personalized medicine: Data Science techniques are used to analyze an individual’s
genetic information, lifestyle factors, and medical history to tailor preventative
strategies and treatment plans, moving away from a one-size-fits-all approach.

« Finance:

— Fraud detection: Al systems continuously monitor financial transactions (e.g., credit
card usage, bank transfers) to identify patterns and anomalies that may indicate
fraudulent activity, allowing for rapid intervention.

— Algorithmic trading: Sophisticated algorithms execute trades at high speeds based
on real-time market data analysis, identifying profitable opportunities much faster
than human traders.
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— Credit scoring and risk assessment: Lenders use data science models to assess the
creditworthiness of loan applicants by analyzing various financial and behavioral
data points, leading to more informed lending decisions.

¢ Retail and E-commerce:

— Recommendation systems: Platforms like Amazon, Netflix, and Spotify use ML
algorithms to analyze user behavior (past purchases, viewed items, ratings) and
item characteristics to suggest products, movies, or songs that a user is likely to
enjoy.

— Customer segmentation and targeted marketing: Data Science helps businesses
group customers into distinct segments based on demographics, purchasing habits,
or preferences, enabling more effective and personalized marketing campaigns.

— Demand forecasting: Retailers use historical sales data, seasonality, and other fac-
tors to predict future demand for products, optimizing inventory levels and reducing
waste.

¢ Transportation:

— Autonomous Vehicles (Self-Driving Cars): Al is the core technology enabling self-
driving cars, involving complex systems for perception (using cameras, LiDAR,
radar), decision-making, and vehicle control.

— Route optimization and traffic management: Navigation services like Google Maps
use real-time data and Al to find the most efficient routes, predict traffic congestion,
and suggest alternatives.

— Predictive maintenance for fleets: Analyzing sensor data from vehicles can help
predict when components are likely to fail, allowing for proactive maintenance and
reducing downtime.

o Natural Language Processing (NLP):

— Virtual assistants and chatbots: Al-powered systems like Apple’s Siri, Amazon’s
Alexa, Google Assistant, and customer service chatbots understand and respond to
human language queries, performing tasks or providing information.

— Machine translation: Services like Google Translate use sophisticated neural ma-
chine translation models to translate text and speech between numerous languages
with increasing accuracy.

— Sentiment analysis: Al techniques analyze text (e.g., social media posts, product
reviews) to determine the underlying sentiment (positive, negative, neutral), pro-
viding businesses with insights into public opinion.

e Manufacturing (Industry 4.0):
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— Predictive maintenance of machinery: Sensors on industrial equipment collect op-
erational data, which Al models analyze to predict potential failures before they
occur, enabling scheduled maintenance and preventing costly unplanned downtime.

— Automated quality control: Computer vision systems powered by Al inspect products
on assembly lines for defects or inconsistencies much faster and often more reliably
than human inspectors.

These examples merely scratch the surface, illustrating the transformative potential of Al and
DS across a multitude of domains.

2.1.7 Career Paths Pertinent to Al and DS

The explosive growth in the generation and availability of data, coupled with advancements
in AT and DS techniques, has created a significant demand for professionals skilled in these
areas. A solid grounding in Al and Data Science can open doors to a wide array of exciting
and impactful career paths:

Data Scientist: This role typically involves collecting, cleaning, processing, and analyz-
ing large and complex datasets. Data Scientists develop statistical models and machine
learning algorithms to identify trends, make predictions, and derive actionable insights
that can inform business strategy. Strong skills in statistics, machine learning, program-
ming (commonly Python or R), and data visualization are essential.

Machine Learning Engineer: ML Engineers are focused on designing, building, de-
ploying, and maintaining machine learning models in production environments. They
ensure that these models are scalable, efficient, and robust. This role requires strong
software engineering skills, deep knowledge of ML algorithms, and often familiarity with
MLOps (Machine Learning Operations) practices.

AT Researcher / Scientist: Individuals in this role are typically involved in advancing
the frontiers of AI knowledge. They conduct research to develop new algorithms, theories,
and methodologies in Al and ML. This path often requires an advanced degree (Ph.D.)
and is common in academic institutions or dedicated corporate research labs.

Data Analyst: Data Analysts focus on gathering, interpreting, and visualizing data
to answer specific business questions and identify trends. They often create reports,
dashboards, and presentations to communicate their findings to stakeholders. Key skills
include proficiency with SQL, spreadsheet software, data visualization tools (like Tableau
or Power BI), and basic statistical understanding.

Business Intelligence (BI) Analyst / Developer: BI professionals use data to help
organizations understand past and current business performance and market dynamics.
They design and develop BI solutions, dashboards, and reporting systems that enable
data-driven decision-making at various levels of an organization.
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o Data Engineer: Data Engineers are responsible for designing, building, and main-

taining the infrastructure and data pipelines that allow for the efficient and reliable
collection, storage, processing, and retrieval of large volumes of data. They work with
database technologies, big data tools (like Spark or Hadoop), and cloud platforms.

AT Specialist / AT Product Manager: An Al Specialist might focus on implementing
specific Al solutions within a business. An AI Product Manager, on the other hand,
defines the vision, strategy, and roadmap for Al-powered products, working closely with
engineering, design, and business teams to bring these products to market.

These roles often have overlapping responsibilities, and the specific titles and duties can vary
between organizations. However, a common thread is the ability to work with data, apply
analytical thinking, and leverage computational tools to solve problems and create value.

@ Review questions

This set of review questions will help you assess your understanding of the material
covered in Unit 1: “The Landscape of Al and Data Science.” Answering these questions
will reinforce key concepts and prepare you for further topics.

2.1.8 Unit review

10.

. According to Russell and Norvig, what are the four main perspectives for defining Arti-

ficial Intelligence? Briefly describe each.

. Explain the “Acting Rationally” approach to AI. Why is it often considered a compre-

hensive and preferred approach in modern Al development?

. What was the significance of the 1956 Dartmouth Workshop in the history of AI?
. Describe one key characteristic or development from the “Early Enthusiasm” period of

AT (1950s-1970s) and one reason that led to the first “Al Winter.”

. How did the focus of Al research shift during the 1990s, leading to the rise of Machine

Learning?

. Choose two distinct disciplines from the “Foundations of AI” (e.g., Philosophy, Mathe-

matics, Neuroscience, Economics) and explain their specific contributions to the field of
Al

. Define Data Science in your own words. What are its three core components or con-

tributing areas?

. Explain the hierarchical relationship between Artificial Intelligence (AI), Machine Learn-

ing (ML), and Deep Learning (DL). Use an analogy if it helps.

. How does Data Science relate to AI and Machine Learning? Is Data Science simply a

part of Al, or is the relationship more nuanced? Explain.
Can a system be considered “Al” if it doesn’t use Machine Learning? Provide a brief
justification or an example. (Hint: Think about early Al systems or rule-based systems).
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11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

Describe two distinct applications of Al/Data Science in the healthcare industry, as
discussed in the unit.

How is Al/Data Science utilized in the e-commerce or retail sector to improve business
outcomes or customer experience? Provide one specific example.

What is Natural Language Processing (NLP)? Give one real-world example of an NLP
application.

What is Computer Vision? Give one real-world example of a Computer Vision applica-
tion.

Briefly describe the primary responsibilities of a “Data Scientist.”

Compare and contrast the roles of a “Machine Learning Engineer” and a “Data Engineer.”
What are their distinct focuses?

Why is “domain expertise” considered crucial for effective Data Science, beyond just
technical skills in programming and statistics?

Reflecting on the history of AI, what is one major challenge or limitation that early Al
researchers encountered?

Based on the applications discussed, why do you think AI and Data Science are consid-
ered transformative technologies in the 21st century?

Considering the definitions provided, what is one fundamental capability a system must
possess to be considered “intelligent” in the context of AI?

2.1.9 Assignments

1.
2.

Al in my world: A critical lens.

Decoding AT’s past and future: A concept map & proposal.
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3 Unit 2- Intelligent Agents and Foundations
of Data Analysis

3.1 Introduction

In this unit, we delve into two crucial areas that form the bedrock of modern Al and Data
Science. First, we will explore the concept of Rational Intelligent Agents, which provides a
powerful framework for understanding and building Al systems. We’ll examine what agents are,
how they interact with their environments, the different types of environments they operate
in, and the various structures and designs for intelligent agents. This part draws mainly from
the principles outlined in Russell and Norvig (2016).

Secondly, this unit will serve as your formal Introduction to Data Science and foundational
Statistics. We will reinforce what Data Science entails and then dive into fundamental sta-
tistical concepts. Understanding statistics is non-negotiable for anyone serious about Data
Science, as it provides the tools to summarize data, make inferences, and quantify uncertainty.
We'll cover topics from sampling techniques and sample characteristics to descriptive statistics,
including measures of central tendency, dispersion, and distribution shape.

By the end of this unit, you should be able to analyze Al systems from an agent perspective
and apply basic statistical methods to describe and interpret datasets.

3.2 Rational Intelligent Agents

The concept of an “agent” is central to understanding AI. It allows us to think about intelligent
systems in a unified way.

3.2.1 What is an Agent?

An agent is anything that can be viewed as perceiving its environment through sensors and
acting upon that environment through actuators. Let’s go through the key terms in this
definition:
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e Sensors: These are the means by which an agent gathers information about its envi-
ronment. For a human agent, sensors include eyes, ears, nose, skin, etc. For a robotic
agent, sensors might include cameras, infrared finders, GPS, bump sensors, etc. For a
software agent, sensors could be keyboard inputs, mouse clicks, network packets, or API
calls that provide data.

e Actuators: These are the means by which an agent performs actions in its environment.
For a human, actuators include hands, legs, vocal cords, etc. For a robot, actuators
might be motors controlling wheels or limbs, grippers, display screens, speakers, etc. For
a software agent, actuators could be displaying information on a screen, writing to a file,
sending network packets, or making API calls to perform an action.

The agent’s percept sequence is the complete history of everything the agent has ever perceived.
An agent’s choice of action at any given instant can depend on the entire percept sequence
observed so far.

3.2.2 Agents and Environments (PEAS Framework)

To design an intelligent agent, we must specify its task environment. Russell and Norvig (2016)
introduce the PEAS framework to do this:

¢ Performance Measure: How is the success of the agent defined? What criteria are used
to evaluate its behavior? This should be an objective measure.

¢ Environment: What is the context in which the agent operates? This includes everything
external to the agent that it interacts with or that influences its choices.

e Actuators: What actions can the agent perform?

e Sensors: What can the agent perceive from its environment?

An illustration of these concepts is given in Figure 3.1.

Agent

Sensors Environment

Processing Actuators  be-edeeeeeee

Figure 3.1: Agent and Environment.

Example: A Self-Driving Car (Automated Taxi)
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o Performance Measure: Safety (no accidents), speed (reaching destination quickly),
legality (obeying traffic laws), passenger comfort, minimizing fuel consumption.

o Environment: Roads, other vehicles (cars, trucks, bikes), pedestrians, traffic signals,
weather conditions, road signs, lane markings.

e Actuators: Steering wheel, accelerator, brake, signal lights, horn, display for passengers.

o Sensors: Cameras (video), LIDAR, radar, GPS, speedometer, odometer, accelerometer,
engine sensors, microphones.

Defining the PEAS for a task is often the first step in designing an agent.

3.2.3 Rationality and Rational Agents

A rational agent is one that acts to achieve the best expected outcome, given its percept
sequence and any built-in knowledge it has. “Best” is defined by the performance measure.

O Important points about rationality:

e Rationality is not omniscience: An omniscient agent knows the actual outcome
of its actions and can act accordingly; but omniscience is impossible in reality. Ra-
tionality is about maximizing ezxpected performance, given the information available
from percepts. An action might turn out badly in hindsight, but still have been
rational if it was the best choice given what was known at the time.

+ Rationality depends on the PEAS: An agent might be rational with respect to
one performance measure but not another, or in one environment but not another.

e Information gathering is often a rational action: If an agent doesn’t know
something important, a rational action might be to perform an exploratory action
to gain more information (e.g., looking before crossing the street).

e Learning is essential for rationality in complex environments: An agent
that learns can improve its performance over time and adapt to unknown or chang-
ing environments.

An ideal rational agent, for each possible percept sequence, does whatever action is expected
to maximize its performance measure, on the basis of the evidence provided by the percept
sequence and whatever built-in knowledge the agent has.

3.3 The Nature of Environments

The characteristics of the task environment significantly influence the design of an intelligent
agent.

Russell and Norvig (2010) describe several dimensions along which environments can be clas-
sified:
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state known

Figure 3.2: The nature of environments- mindmap

1. Fully Observable vs. Partially Observable:

o Fully Observable: If an agent’s sensors give it access to the complete state of the
environment at each point in time, then the environment is fully observable. The
agent does not need to maintain much internal state to keep track of the world.

o Partially Observable: If the agent only has access to partial information about
the state (e.g., due to noisy or inaccurate sensors, or parts of the state being hidden),
it’s partially observable. The agent may need to maintain an internal model of the
world to estimate the current state.

e Example: A chess game with a visible board is fully observable. A poker game where
opponents’ cards are hidden is partially observable. A self-driving car operates in a
partially observable environment (it can’t see around corners or know other drivers’
exact intentions).

2. Deterministic vs. Stochastic (or Non-deterministic):

¢ Deterministic: If the next state of the environment is completely determined
by the current state and the action executed by the agent, the environment is
deterministic.

e Stochastic: If there is uncertainty about the next state even when the current state
and agent’s action are known, the environment is stochastic. This often implies
probabilities associated with outcomes.

¢ Non-deterministic: If the outcomes are not determined by the current state and
action, but are not described by probabilities (i.e., actions can have a set of possible

23



outcomes, but no probabilities are assigned). From an agent design perspective, if
an environment is non-deterministic, it is often treated as stochastic.

e FEzample: Chess is deterministic. A card game with shuffling is stochastic. A self-

driving car is stochastic (e.g., tire blowouts, unpredictable actions of other drivers).

3. Episodic vs. Sequential:

o Episodic: The agent’s experience is divided into atomic “episodes.” In each episode,

the agent perceives and then performs a single action. The choice of action in one
episode does not affect future episodes.

e Sequential: The current decision can affect all future decisions. The agent needs

to think ahead.

o FEzample: An image classification task is often episodic (classifying one image

doesn’t directly affect the next). Chess and driving are sequential.

4. Static vs. Dynamic:

Static: The environment does not change while the agent is deliberating or deciding
on an action.

Dynamic: The environment can change while the agent is thinking. If the agent
takes too long, the world changes, and its chosen action might no longer be appro-
priate.

Semidynamic: The environment itself doesn’t change with the passage of time,
but the agent’s performance score does.

Example: A crossword puzzle is static. Chess played with a clock is semidynamic.
Driving is dynamic.

5. Discrete vs. Continuous:

This refers to the nature of the environment’s state, the way time is handled, and
the agent’s percepts and actions.

Discrete: A finite or countably infinite number of distinct states, percepts, and
actions.

Continuous: States, time, percepts, or actions can take on values from a continu-
ous range.

Ezxample: Chess is discrete. Driving involves continuous time, positions, speeds, etc.

6. Single-agent vs. Multi-agent:

Single-agent: Only one agent is operating in the environment.
Multi-agent: Multiple agents are present. This introduces complexities like coop-
eration, competition, or communication.

— Competitive Multi-agent: Agents have conflicting goals (e.g., chess).
— Cooperative Multi-agent: Agents share common goals (e.g., a team of
robots collaborating on a task).
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e FEzample: Solving a crossword puzzle is single-agent. Chess is competitive multi-
agent. A team of soccer-playing robots is cooperative multi-agent. Driving is multi-
agent (usually competitive in some sense, but with elements of cooperation like
following traffic laws).

Understanding these properties is crucial because the complexity of the agent design often
depends heavily on the nature of its environment. The “real world” is typically partially
observable, stochastic, sequential, dynamic, continuous, and multi-agent.

3.4 The Structure of Agents

An agent is implemented by an agent program, which is a function that maps percepts
to actions. This program runs on some computing device with physical sensors and
actuators, referred to as the agent architecture.

1 Agent

Agent = Architecture + Program

We can categorize agent programs into several types based on their complexity and capabili-
ties.

3.4.1 Agent Programs and Agent Architecture

The function that implements the agent’s mapping from percepts to actions is called an agent
program. It takes the current percept as input and returns an action. The physical or compu-
tational platform on which the agent program runs is termed as the agent architecture. This
includes the sensors that provide percepts and the actuators that execute actions.

3.4.2 Types of Agent Programs

Russell and Norvig (2016) (Chapter 2) describe a hierarchy of agent designs. A summary of
this discussion is given here.

1. Simple Reflex Agents:

o How they work: These agents select actions based only on the current percept,
ignoring the rest of the percept history. They use condition-action rules (if-then
rules).

e If (condition) then action

¢ Internal State: No memory of past percepts. They are stateless.
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Limitations: Can only work if the correct decision can be made based on the
current percept alone. They get stuck in infinite loops easily if operating in partially
observable environments.

Ezample: A thermostat that turns on heat if the temperature is below a set point
and turns it off if above. An automated vacuum cleaner that changes direction
when its bump sensor is triggered.

2. Model-based Reflex Agents (or Agents with Internal State):

How they work: To handle partial observability, these agents maintain some in-
ternal state that depends on the percept history and reflects some of the unobserved
aspects of the current state. This internal state is a “model” of the world.
They need two kinds of knowledge:

1. How the world evolves independently of the agent.

2. How the agent’s own actions affect the world.
They update their internal state based on the current percept and their model of
how the world works. Then, they choose an action based on this internal state,
similar to a simple reflex agent.
Internal State: Maintains a model of the current state of the world.
Example: A self-driving car needs to keep track of where other cars might be even
if it can’t see them at the moment, based on its model of traffic flow.

3. Goal-based Agents:

(]

How they work: Knowing the current state of the environment is not always
enough to decide what to do. Sometimes the agent needs a goal — a description of
desirable situations. These agents combine their model of the world with a goal to
choose actions.

They might involve search and planning to find a sequence of actions that achieves
the goal. The decision process is fundamentally different from reflex agents; it
considers the future.

Internal State: Maintains a model of the world and information about its current
goal(s).

Flexibility: More flexible than reflex agents because the knowledge supporting
their decisions is explicitly represented and can be modified. If the goal changes,
the agent can adapt.

Example: A delivery robot trying to reach a specific destination. A route-finding
system in a GPS.

4. Utility-based Agents:

How they work: Goals alone are often not enough to generate high-quality behav-
ior in many environments. There might be multiple ways to achieve a goal, some
better (faster, safer, cheaper) than others. A utility function maps a state (or
a sequence of states) onto a real number, which describes the associated degree of
“happiness” or desirability.
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o These agents choose actions that maximize their expected utility. If there are con-
flicting goals, or uncertainty in outcomes, a utility function provides a way to make
rational trade-offs.

¢ Internal State: Maintains a model of the world and a utility function.

¢ Rationality: Provides a more general and complete basis for rational decision-
making than goal-based agents.

e FEzample: A self-driving car making decisions that balance speed, safety, fuel effi-
ciency, and passenger comfort, where each of these contributes to an overall utility.
A trading agent deciding which stocks to buy or sell to maximize expected profit
while managing risk.

5. Learning Agents:

¢ How they work: Learning agents can improve their performance over time by
modifying their internal components based on experience. A learning agent can be
divided into four conceptual components:

1. Learning Element: Responsible for making improvements. It uses feedback
from the “critic” on how the agent is doing and determines how the “perfor-
mance element” should be modified to do better in the future.

2. Performance Element: Responsible for selecting external actions. It is what
we previously considered to be the entire agent (e.g., a model-based, goal-based,
or utility-based agent).

3. Critic: Tells the learning element how well the agent is doing with respect to
a fixed performance standard. It provides feedback.

4. Problem Generator: Responsible for suggesting actions that will lead to new
and informative experiences. This helps the agent explore its environment.

e Adaptability: Can operate in initially unknown environments and become more
competent than their initial knowledge might allow.

e FExample: A spam filter that learns to better classify emails based on user feedback.
A game-playing Al that improves its strategy by playing many games.

These agent types represent increasing levels of generality and intelligence. Real-world Al
systems often combine aspects of several of these types.

3.5 Introduction to Data Science and Statistics

While Unit 1 introduced Data Science, this section reinforces its overview and transitions into
the crucial role of statistics within it.
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3.5.1 Overview of Data Science (Recap and Reinforcement)

As a reminder, Data Science is an interdisciplinary field focused on extracting knowledge
and insights from data. It involves a blend of skills from computer science (programming,
algorithms), statistics, and domain expertise. The goal is typically to understand past and
present phenomena and to make predictions or informed decisions about the future. The Data
Science pipeline often includes:

1.

Problem Formulation/Question Asking: Defining what you want to learn or pre-
dict.

. Data Acquisition: Gathering relevant data.
. Data Cleaning and Preprocessing: Handling missing values, errors, and transform-

ing data into a usable format.

. Exploratory Data Analysis (EDA): Visualizing and summarizing data to understand

its main characteristics and patterns.

. Modeling: Applying statistical or machine learning models to make predictions or

inferences.

. Evaluation: Assessing the performance and validity of the model.
. Communication/Deployment: Presenting findings or deploying the model for use.

3.5.2 Why Statistics for Data Science?

Statistics is the science of collecting, analyzing, interpreting, presenting, and organizing data.
It is absolutely fundamental to Data Science because:

Describing Data: Statistics provides methods (descriptive statistics) to summarize
and describe the main features of a dataset (e.g., average values, spread of data).
Making Inferences: It allows us to make inferences or draw conclusions about a larger
population based on a smaller sample of data (inferential statistics).

Quantifying Uncertainty: Statistical methods help us understand and quantify the
uncertainty associated with our data, models, and conclusions.

Designing Experiments: It provides principles for designing effective data collection
strategies and experiments to answer specific questions.

Model Building and Validation: Many machine learning models are built upon
statistical principles, and statistics provides tools for evaluating model performance and
significance.

Without a solid understanding of statistics, a data scientist risks misinterpreting data, drawing
incorrect conclusions, and building flawed models.
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3.5.3 Basic Statistical Concepts

Let’s define some foundational statistical terms:

¢ Population: The entire group of individuals, items, or data points that we are interested
in studying.

— FEzample: All students enrolled at Amrita Vishwa Vidyapeetham; all transactions
made by a company in a year; all stars in the Milky Way galaxy.

e Sample: A subset of the population that is selected for analysis. We study samples
because it’s often impractical or impossible to study the entire population.

— FEzample: 500 randomly selected students from Amrita; 1000 randomly selected
transactions from the past month; a sample of 100 stars observed by a telescope.

o Parameter: A numerical characteristic of a population (e.g., the true average height of
all Amrita students). Parameters are usually unknown and are what we often want to
estimate.

o Statistic: A numerical characteristic of a sample (e.g., the average height of the 500
sampled Amrita students). We use statistics to estimate population parameters.

3.5.3.1 Sampling Techniques (Brief Overview)

The way a sample is selected is crucial for its representativeness of the population. Some
popular sampling techniques are given below.

¢« Simple Random Sampling: Every member of the population has an equal chance of
being selected, and every possible sample of a given size has an equal chance of being
selected.

e Stratified Sampling: The population is divided into mutually exclusive subgroups
(strata) based on some characteristic (e.g., department, gender). Then, a simple random
sample is taken from each stratum. This ensures representation from all subgroups.

o Cluster Sampling: The population is divided into clusters (often geographically). A
random sample of clusters is selected, and then all members within the selected clusters
are included in the sample (or a sample is taken from within the selected clusters).

3.5.3.2 Sample Means and Sample Sizes

o Sample Mean (X): The average of the data points in a sample. It is a statistic used
to estimate the population mean ().

29



o Sample Size (n): The number of observations in a sample. The size of the sample
affects the reliability of the estimates. Generally, larger samples (if well-selected) provide
more precise estimates of population parameters. Determining an appropriate sample
size is an important consideration in statistical studies.

3.6 Descriptive Statistics: Summarizing Data

Descriptive statistics are used to quantitatively describe or summarize the main features of a
collection of information (a dataset).

3.6.1 Types of Data

Understanding the type of data you have is crucial for choosing appropriate descriptive statis-
tics and visualizations.

o Categorical Data (Qualitative): Represents characteristics or qualities.

— Nominal Data: Categories without a natural order or ranking (e.g., gender, color,
city of birth).

— Ordinal Data: Categories with a meaningful order or ranking, but the differences
between categories may not be equal or quantifiable (e.g., education level: High
School, Bachelor’s, Master’s, PhD; satisfaction rating: Very Dissatisfied, Dissatis-
fied, Neutral, Satisfied, Very Satisfied).

o Numerical Data (Quantitative): Represents measurable quantities.

— Discrete Data: Can only take on specific, distinct values (often integers), usually
a result of counting (e.g., number of students in a class, number of cars passing a
point).

— Continuous Data: Can take on any value within a given range, usually a result
of measurement (e.g., height, weight, temperature, time).

3.6.2 Measures of Central Tendency: Finding the “Center” of Your Data

Measures of central tendency are cornerstone descriptive statistics that help us pinpoint the
“center,” “typical value,” or the point around which data tends to cluster. Identifying this
central point is often the initial step in exploring a dataset and gaining meaningful insights.
The selection of an appropriate measure is not arbitrary; it depends significantly on the na-
ture of the data being analyzed—whether it’s categorical or numerical—and the shape of its
distribution, particularly whether it’s symmetric or skewed. For aspiring data analysts, it is
paramount not merely to learn the calculation of these measures but to deeply understand
their contextual relevance, their strengths, and their inherent limitations.
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The Mean (Arithmetic Average): The Balancing Point

The most commonly known measure of central tendency is the mean, often referred to as
the arithmetic average. Conceptually, if you were to plot all your data points on a number
line, each with equal weight, the mean would represent the physical balancing point of that
number line. It is calculated by summing all the values in a dataset and then dividing by
the total count of those values. For an entire population, the mean is denoted by (mu) and

LX

calculated as p = ¢ where X is each population value and N is the population size. For

a sample drawn from a population, the sample mean is denoted by % (x-bar) or sometimes M,

>z
n

and calculated as x = , where x is each sample value and n is the sample size.

The mean is most appropriately used for numerical data (specifically, data measured on an
interval or ratio scale) that exhibits a symmetrical distribution, such as the bell-shaped normal
distribution. In such cases, the mean accurately reflects the center of the data. Furthermore,
because it incorporates every data point in its calculation, it is a comprehensive measure and
serves as a foundational element for many other important statistical calculations, including
variance, standard deviation, and numerous inferential statistical tests.

However, a critical consideration for data analysts is the mean’s high sensitivity to outliers,
or extreme values. A single unusually large or small value can disproportionately influence
the mean, pulling it towards the outlier and potentially misrepresenting the “typical” value
of the dataset. Consider, for instance, a small dataset of salaries: [ 30,000, 35,000, 40,000,
45,000, 500,000]. The calculated mean salary is 130,000. This figure, heavily skewed by
the 500,000 outlier, doesn’t accurately represent the typical earnings within this group. It’s
also important to note that calculating a mean for nominal categorical data (e.g., “average
color”) is meaningless. While a mean can be computed for ordinal data if numerical codes are
assigned, its interpretation must be approached with caution, as the intervals between ordinal
categories are not necessarily uniform or quantitatively meaningful. Python implementation
of this problem is here:

import numpy as np

import pandas as pd
from scipy import stats # For mode

salaries = np.array([30000, 35000, 40000, 45000, 500000])
# Calculate Mean
mean_salary_manual = sum(salaries) / len(salaries)

mean_salary_numpy = np.mean(salaries)

print (f"Manually Calculated Mean Salary: {mean_salary_manual:,.2f}")
print (£"NumPy Calculated Mean Salary: {mean_salary_numpy:,.2f}")
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Manually Calculated Mean Salary: 130,000.00
NumPy Calculated Mean Salary: 130,000.00

As seen, the mean salary is 130,000.00, heavily influenced by the outlier. The mean is best
suited for numerical data that is symmetrically distributed. Its high sensitivity to outliers is
a critical consideration.

The Median: The Middle Ground

When data is skewed or contains significant outliers, the median often provides a more robust
and representative measure of central tendency. The median is defined as the middle value in
a dataset that has been arranged in ascending or descending order. It effectively divides the
dataset into two equal halves, with 50% of the data points falling below it and 50% above.

To calculate the median, the first step is always to sort the data. If the dataset contains an
odd number of observations (n), the median is simply the value at the (n+1)/2 position in the
sorted list. If n is even, the median is the average of the two middle values, specifically the
values at the n/2 position and the (n/2)+1 position. Python code to calculate median of the
previous example is given below.

# Calculate Median for the salaries
median_salary_numpy = np.median(salaries)
print (f"NumPy Calculated Median Salary: {median_salary_numpy:,.2f}")

NumPy Calculated Median Salary: 40,000.00

The primary strength of the median lies in its robustness to outliers. Unlike the mean, extreme
values have little to no impact on the median. Revisiting our salary example [ 30,000, 35,000,
40,000, 45,000, 500,000], the median salary is 40,000. This value is clearly a more accurate
reflection of the typical salary in this dataset than the mean of 130,000. This makes the median
an ideal choice for skewed numerical datasets. It is also a suitable measure for ordinal data,
allowing us, for instance, to find a median satisfaction rating. However, one should be aware
that the median does not utilize all the data values in its calculation—it primarily depends
on the value(s) in the middle. While this contributes to its robustness, it also means that it
is sometimes less mathematically tractable for certain advanced statistical procedures where
the properties of the mean are preferred. The interpretation of the median is straightforward:
“Half the data points are below this value, and half are above.”

The Mode: The Most Frequent

The mode offers a different perspective on central tendency by identifying the value or category
that appears most frequently within a dataset. To find the mode, one simply counts the
occurrences of each unique value or category; the one with the highest frequency is designated
as the mode. A dataset might present with no mode if all values occur with equal frequency.
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It can be unimodal (having one mode), bimodal (having two modes, if two distinct values share
the highest frequency), or even multimodal (having more than two modes).

A significant advantage of the mode is that it is the only measure of central tendency appro-
priate for nominal categorical data. For example, in a dataset of car sales, the mode would tell
us the most commonly sold car color. The mode can also be applied to ordinal and numerical
data (both discrete and continuous, though for continuous data, values are often grouped into
intervals or bins first to determine a modal class). Like the median, the mode is not affected by
outliers. However, it’s important to recognize that the mode may not always be unique, or in
some datasets, it might not exist at all, which can limit its utility as a sole summary statistic.
In distributions that are heavily skewed, the mode might be located at one end and may not
be a good indicator of the overall central location of the data. Nevertheless, in multimodal
distributions, the modes are valuable for highlighting multiple points of concentration or peaks
within the data.

A Python example to find the mode of a data is given below:

# Example for Mode
data_for_mode = [1, 2, 2, 3, 3, 3, 4, 5, 5]
mode_scipy = stats.mode(data_for_mode, keepdims=False) # keepdims=False for cleaner output i

print(f"Data for mode: {data_for_model}")
print (f"Mode (SciPy): {mode_scipy.mode}, Count: {mode_scipy.countl}")

Data for mode: [1, 2, 2, 3, 3, 3, 4, 5, 5]
Mode (SciPy): 3, Count: 3

# For multiple modes or categorical data, Pandas is often easier

categorical_data = pd.Series(['apple', 'banana', 'apple', 'orange', 'banana', 'apple'l)
mode_pandas_categorical = categorical_data.mode()

print (f"\nCategorical Data: {list(categorical_data)}")

print (f"Mode(s) (Pandas):\n{mode_pandas_categoricall}")

Categorical Data: ['apple', 'banana', 'apple', 'orange', 'banana', 'apple'l]
Mode(s) (Pandas):

0 apple

dtype: object
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! Choosing the Right Measure: A Data Analyst’s Perspective

As a data analyst, selecting a single measure of central tendency in isolation is rarely
sufficient. A more insightful approach involves considering these measures collectively to
build a comprehensive understanding of the data’s central location and distribution.
When dealing with a symmetrically distributed dataset, such as data that approximates
a normal (bell-shaped) curve, the mean, median, and mode will typically be very close
to each other, often nearly identical. In such scenarios, the mean is often the preferred
measure due to its desirable mathematical properties that facilitate further statistical
analysis.

However, the situation changes with skewed distributions. In a positively skewed (or right-
skewed) distribution, where the tail extends towards the higher values, the presence of
high-value outliers tends to pull the mean upwards. Consequently, the relationship is
generally Mean > Median > Mode. Here, the median is usually a more faithful represen-
tative of the central tendency than the mean. Conversely, in a negatively skewed (or
left-skewed) distribution, where the tail extends towards lower values, low-value outliers
pull the mean downwards, resulting in a typical relationship of Mean < Median < Mode.
Again, the median often provides a more reliable indication of the center.

For categorical data, the choices are more constrained. For nominal data, only the mode
is meaningful. For ordinal data, both the median and the mode are appropriate and can
provide useful insights. While a mean can be calculated for ordinal data if numerical codes
are assigned, its interpretation requires careful consideration of whether the intervals
between categories are truly equal and meaningful.

The presence of outliers is a critical flag for any data analyst. If outliers are suspected
in numerical data, it is always advisable to calculate both the mean and the median. A
substantial difference between these two values is a strong indicator of either a skewed
distribution or the significant influence of extreme values. Such observations warrant
further investigation into the nature and cause of these outliers.

Consider a practical scenario in e-commerce data analytics. Suppose an analysis of customer
purchase amounts reveals a mean purchase amount of $150, a median purchase amount of
$60, and a modal purchase amount (when grouped into $10 bins) in the $40-$50 range. This
combination of measures tells a story: the distribution of purchase amounts is likely positively
skewed. The mean ($150) being considerably higher than the median ($60) suggests that a
subset of customers is making very large purchases, thereby inflating the average. The median
(360) offers a better representation of what a “typical” customer spends — half of the customers
spend less than $60, and half spend more. The mode ($40-350) highlights the most frequent
range of purchase amounts. An analyst would communicate these findings by emphasizing
the median as the typical expenditure while also noting the higher mean, which underscores
the importance of high-value customers. This would naturally lead to further investigation
into the characteristics and behaviors of these high-spending customers. A histogram of the
purchase data would visually confirm the observed skewness. We will discuss the concept of
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skewness more detail in the coming sections.

3.6.3 Measures of Dispersion (Variability): Quantifying the Spread of Data

While measures of central tendency provide a snapshot of the “typical” value in a dataset, they
do not tell the whole story. Two datasets can have the same mean or median yet look vastly
different in terms of how their data points are scattered. Measures of dispersion, also known
as measures of variability or spread, quantify the extent to which data points in a dataset
deviate from the central tendency or from each other. Understanding dispersion is crucial for
assessing the consistency, reliability, and distribution pattern of data.

1. The Range:- A Simplistic View of Spread

The range is the simplest measure of dispersion, calculated merely as the difference between
the maximum and minimum values in a dataset: Range = Maximum Value - Minimum Value.
While straightforward to compute, its utility is limited because it only considers the two most
extreme data points. Consequently, the range is highly sensitive to outliers. A single unusually
high or low value can dramatically inflate the range, providing a potentially misleading picture
of the overall variability of the majority of the data. For instance, in our salary example [ 30k,
35k, 40k, 45k, 500k], the range is 470k, largely driven by the single outlier. If the outlier
were absent, the range would be much smaller ( 15k). Thus, while the range gives a quick sense
of the total span of the data, it is generally not a robust measure of dispersion. A Python
example is given below:

# Range for salaries

range_salaries = np.ptp(salaries) # ptp stands for "peak to peak"
# Alternatively: np.max(salaries) - np.min(salaries)
print(f"Salaries: {salaries}")

print(f"Range of Salaries: {range_salaries:,.2f}")

Salaries: [ 30000 35000 40000 45000 500000]
Range of Salaries: 470,000.00

The range for our salary example is 470,000.00, largely driven by the outlier. It’s simple but
highly sensitive to outliers.
2. Variance:- The Average Squared Deviation

A more sophisticated and widely used measure of dispersion is variance. Variance quantifies the
average of the squared differences of each data point from the mean of the dataset. Squaring
the differences serves two purposes: it prevents negative and positive deviations from canceling
each other out, and it emphasizes larger deviations more heavily.

35



2 _ 2(X — N)2

)

For an entire population, the variance ( 2, sigma-squared) is calculated as: o

where X is each population value, is the population mean, and N is the population size.

When calculating variance from a sample to estimate the population variance, a slight modifi-

(@, —z)?

cation is used for the sample variance (s2): s = . Here, x is each sample value,

X is the sample mean, and n is the sample size. The use of (n - 1) in the denominator,
known as Bessel’s correction, provides an unbiased estimate of the population variance from
the sample data. A python example to find variance of a data is given below:

# Variance for salaries (sample variance, ddof=1 by default in NumPy)
variance_salaries_numpy = np.var(salaries, ddof=1) # ddof=1 for sample variance
print(f"Sample Variance of Salaries (NumPy, ddof=1): {variance_salaries_numpy:,.2f}")

Sample Variance of Salaries (NumPy, ddof=1): 42,812,500,000.00

The units of variance are squared (e.g., (Rupees)?), making direct interpretation difficult.

1 Interpretability issue of variance

The primary challenge with interpreting variance directly is that its units are the square
of the original data units (e.g., if data is in meters, variance is in meters squared). This
can make it less intuitive to relate back to the original scale of measurement. However,
variance is a critical component in many statistical formulas and models.

3. Standard Deviation:- An Interpretable Measure of Spread

To overcome the unit interpretation issue of variance, we use the standard deviation. The
standard deviation is simply the square root of the variance. It measures the typical or average
amount by which data points deviate from the mean. The population standard deviation ( ,
sigma) is = v 2, and the sample standard deviation (s) is s = vs?.

A simple Python example is here:

# Standard Deviation for salaries (sample standard deviation)
std_dev_salaries_numpy = np.std(salaries, ddof=1) # ddof=1 for sample std
print(f"Sample Standard Deviation of Salaries (NumPy, ddof=1): {std_dev_salaries_numpy:, .2f]

Sample Standard Deviation of Salaries (NumPy, ddof=1): 206,911.82

A small standard deviation means data points are close to the mean; a large one means they
are spread out.
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! Standard deviation over variance in statistical calculations

The standard deviation is expressed in the same units as the original data, making it
much more interpretable. A small standard deviation indicates that the data points
tend to be clustered closely around the mean, signifying low variability. Conversely, a
large standard deviation suggests that the data points are spread out over a wider range
of values, indicating high variability. For data that follows a normal distribution, the
standard deviation has particularly useful properties (e.g., approximately 68% of data
falls within one standard deviation of the mean, 95% within two, and 99.7% within three
— the empirical rule).

4. Interquartile Range (IQR):- A Robust Measure of Middle Spread

Similar to how the median is a robust measure of central tendency, the Interquartile Range
(IQR) is a robust measure of dispersion, meaning it is less affected by outliers. The IQR
describes the spread of the middle 50% of the data. To understand IQR, we first need to
understand quartiles.

Quartiles divide a sorted dataset into four equal parts, each containing 25% of the observa-
tions:

e Q1 (First Quartile or 25th Percentile): The value below which 25% of the data falls.
e Q2 (Second Quartile or 50th Percentile): This is simply the Median of the dataset.
o Q3 (Third Quartile or 75th Percentile): The value below which 75% of the data falls.

The Interquartile Range is then calculated as the difference between the third and first quartiles:
IQR = Q3 - Q1.

Because the IQR focuses on the central portion of the data distribution, it is not influenced
by extreme values in the tails. This makes it a particularly useful measure of spread for
skewed distributions or datasets known to contain outliers. The IQR is also instrumental in
constructing box plots and in a common rule of thumb for identifying potential outliers: data
points falling below Q1 - 1.5 * IQR or above Q3 + 1.5 * IQR are often flagged for further
investigation.

As a data analyst, you would choose measures of dispersion based on the data’s characteristics
and your analytical goals. If your data is symmetric and free of significant outliers, the standard
deviation provides a comprehensive measure. If the data is skewed or outliers are a concern,
the IQR offers a more robust alternative for understanding the spread of the bulk of your data.
Following Python code demonstrate the IQR calculation of the previously discussed salary
data.
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# IQR for salaries

ql_salaries = np.percentile(salaries, 25)
g3_salaries = np.percentile(salaries, 75)
igr_salaries = q3_salaries - ql_salaries
# Alternatively, using scipy.stats
iqr_scipy_salaries = stats.iqr(salaries)

print(£"Q1 Salary: {ql_salaries:,.2f}")

print(£"Q3 Salary: {q3_salaries:,.2f}")

print (£"IQR of Salaries (Manual Percentile): {iqr_salaries:,.2f}")
print (f"IQR of Salaries (SciPy): {iqr_scipy_salaries:,.2f}")

Q1 Salary: 35,000.00

Q3 Salary: 45,000.00

IQR of Salaries (Manual Percentile): 10,000.00
IQR of Salaries (SciPy): 10,000.00

3.6.4 Covariance: Measuring Joint Variability

Thus far, we have focused on describing single variables (univariate analysis). However, data
analysts are often interested in understanding the relationships between two or more variables
(bivariate or multivariate analysis). Covariance is a statistical measure that describes the
direction of the linear relationship between two numerical variables. It quantifies how two
variables change together.

If two variables tend to increase or decrease together, their covariance will be positive. For
example, we might expect a positive covariance between study hours and exam scores. If one
variable tends to increase while the other decreases, their covariance will be negative. For
instance, the covariance between temperature and sales of hot chocolate might be negative. If
there is no discernible linear tendency for the variables to move together, their covariance will
be close to zero.

The sample covariance between two variables, X and Y, is calculated as: Cov(X,Y) =
2 (zi —2)(y; — 9)

n—1
respective sample means, and n is the number of pairs. Each term (z; — Z)(y, — y) will be

positive if both x and y are above their means or both are below their means. It will be
negative if one is above its mean and the other is below. Summing these products gives an
overall sense of the joint deviation.

, where x and y are individual paired observations, X and § are their

While covariance indicates the direction of the relationship, a significant limitation is that
its magnitude is not standardized and depends on the units of measurement of the variables.
For example, the covariance between height (in cm) and weight (in kg) will be different from
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the covariance between height (in meters) and weight (in pounds), even if the underlying
relationship is the same. This makes it difficult to compare the strength of relationships across
different pairs of variables using covariance alone. To address this, a standardized version
called the correlation coefficient (which we will discuss later) is often preferred for assessing
the strength and direction of a linear relationship.

As a simple example, consider the context of study hours and exam score for 5 students given
below. Examine whether there exist a positive correlation between the number of hours studied
and exam score.

study_hours = np.array([2, 3, 5, 1, 4]1)
np.array([65, 70, 85, 60, 75])

exam_Sscores

Python code to solve this problem is given below:

import numpy as np
study_hours = np.array([2, 3, 5, 1, 4])
exam_scores = np.array([65, 70, 85, 60, 75])

# Covariance matrix

# The diagonal elements are variances of each variable.

# 0ff-diagonal elements are covariances between pairs of variables.
covariance_matrix = np.cov(study_hours, exam_scores) # Rowvar=True by default
# covariance_matrix[0, 1] is Cov(study_hours, exam_scores)

print ("Study Hours:", study_hours)

print ("Exam Scores:", exam_scores)

print ("\nCovariance Matrix:")

print(covariance_matrix)

print (£"\nCov(Study Hours, Exam Scores): {covariance_matrix[0, 1]:.2f}")

Study Hours: [2 3 5 1 4]
Exam Scores: [65 70 85 60 75]

Covariance Matrix:
[[ 2.5 15. ]
[15. 92.5]1]

Cov(Study Hours, Exam Scores): 15.00

A positive covariance (like 15.00 here) suggests that as study hours increase, exam scores tend
to increase. However, the magnitude is not standardized and depends on the units.
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3.6.5 Skewness and Kurtosis: Describing the Shape of a Distribution

Beyond central tendency and dispersion, the overall shape of a data distribution provides
valuable insights. Two important measures that describe shape are skewness and kurtosis.

Skewness: Measuring Asymmetry

Skewness is a measure of the asymmetry of a probability distribution of a real-valued random
variable around its mean. In simpler terms, it tells us if the distribution is lopsided or symmet-
ric. * A distribution with zero skewness (or a skewness value very close to zero) is perfectly
symmetric. For such distributions, like the normal distribution, the mean, median, and mode
are typically equal or very close. * A positively skewed (or right-skewed) distribution has a
longer or fatter tail on its right side. This indicates that there are some unusually high values
pulling the mean to the right. In such distributions, the general relationship is Mean > Median
> Mode. * A negatively skewed (or left-skewed) distribution has a longer or fatter tail on its
left side, indicating the presence of unusually low values pulling the mean to the left. Here,
the typical relationship is Mean < Median < Mode.

Symmetric (Skewness = 0) Positive Skew (Right Skew)

Normal Curve Curve Skewed Right

Figure 3.3: Skewness and Normal curve

Understanding skewness is crucial for data analysts because it affects the choice of appropriate
statistical models and tests. Many statistical techniques assume a symmetric (often normal)
distribution, and significant skewness might require data transformations or the use of non-
parametric methods.

Kurtosis: Measuring “Tailedness” and “Peakedness”

Kurtosis measures the “tailedness” or “peakedness” of a probability distribution relative to a
normal distribution. It describes the concentration of data in the tails and around the peak.
The kurtosis of a standard normal distribution is 3. Often, “excess kurtosis” is reported, which
is Kurtosis - 3. * Leptokurtic distributions (positive excess kurtosis, > 0): These distribu-
tions have a sharper peak and heavier (fatter) tails than a normal distribution. This implies
that extreme values (outliers) are more likely to occur compared to a normal distribution.
More of the variance is due to these infrequent extreme deviations. * Mesokurtic distributions
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(excess kurtosis 0): These have a similar degree of peakedness and tailedness as a normal
distribution. * Platykurtic distributions (negative excess kurtosis, < 0): These distributions
are flatter and have thinner tails than a normal distribution. Extreme values are less likely.
The variance is more due to frequent, modestly sized deviations.

Kurtosis helps analysts understand the risk of outliers in a dataset. A high kurtosis suggests
that the data has a higher propensity for producing extreme values, which can be critical in
fields like finance (risk management) or quality control. Python code to find the skewness and
kurtosis of the previous salary data is here:

# Skewness and Kurtosis for salaries

# Note: SciPy's kurtosis calculates "excess kurtosis" by default (fisher=True)
skewness_salaries = stats.skew(salaries)

kurtosis_salaries = stats.kurtosis(salaries, fisher=True) # Fisher=True for excess kurtosis

print(f"Salaries Data: {salariesl}")
print (f"Skewness of Salaries: {skewness_salaries:.2f}")
print (f"Excess Kurtosis of Salaries: {kurtosis_salaries:.2f1}")

Salaries Data: [ 30000 35000 40000 45000 500000]
Skewness of Salaries: 1.50
Excess Kurtosis of Salaries: 0.25

Another demonstration of skewness and kurtosis of a symmetric data is given below.

# Example of a more symmetric dataset

symmetric_data = np.array([1l, 2, 3, 4, 5, 6, 7, 8, 9, 10, 4, 5, 6, 7, 5, 6])
skewness_symmetric = stats.skew(symmetric_data)

kurtosis_symmetric = stats.kurtosis(symmetric_data)

print (f"\nSymmetric Data Example: {symmetric_datal}")

print (f"Skewness of Symmetric Data: {skewness_symmetric:.2f}")

print (f"Excess Kurtosis of Symmetric Data: {kurtosis_symmetric:.2f}")

Symmetric Data Example: [ 1 2 3 4 5 6 7 8 910 4 5 6 7 5 6]
Skewness of Symmetric Data: 0.00
Excess Kurtosis of Symmetric Data: -0.48

3.6.6 Visualizing distribution key points using a Box plot

A concise and effective way to summarize the distribution of numerical data is through the
five-point summary. This summary consists of five key statistical values:
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. Minimum: The smallest value in the dataset.
. First Quartile (Q1): The 25th percentile.

. Median (Q2): The 50th percentile.

. Third Quartile (Q3): The 75th percentile.

. Mazimum: The largest value in the dataset.

Uk W N =

This summary provides a quick understanding of the range, central tendency (median), and
spread of the inner 50% of the data (IQR = Q3 - Q1).

The Boz Plot (also known as a box-and-whisker plot) is a standardized graphical representation
of the five-point summary, offering a powerful visual tool for data analysis. A typical box plot
displays:

o A rectangular “boz” that extends from the first quartile (Q1) to the third quartile (Q3).
The length of this box represents the Interquartile Range (IQR).

o A line inside the bozr that marks the median (Q2).

o “Whiskers” that extend from the ends of the box. The traditional method for drawing
whiskers is to extend them to the minimum and maximum data values within a range of
1.5 times the IQR from the quartiles (i.e., from Q1 - 1.5IQR to Q3 + 1.5IQR).

e Data points that fall outside these whiskers are often plotted individually as dots or
asterisks and are considered potential outliers.

Box plots are exceptionally useful for several reasons:

e They clearly show the median, IQR, and overall range of the data.

e They provide a visual indication of the data’s symmetry or skewness. If the median is
not centered in the box, or if one whisker is much longer than the other, it suggests
skewness.

e They are very effective for identifying potential outliers.

e They allow for easy comparison of distributions across multiple groups when plotted
side-by-side.

The five point summary of the previous salary data is visualized with a box-plot in Python
code.

import matplotlib.pyplot as plt
import seaborn as sns

# Five-point summary for salaries using NumPy percentiles
min_sal = np.min(salaries)

ql_sal = np.percentile(salaries, 25)

median_sal = np.median(salaries)

g3_sal = np.percentile(salaries, 75)

max_sal = np.max(salaries)
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print ("Five-Point Summary for Salaries:")

print(f" Minimum: {min_sal:,.2f}")

print(f" Q1 (25th Percentile): {ql_sal:,.2f}")
print(f" Median (50th Percentile): {median_sal:,.2f}")
print(f" Q3 (75th Percentile): {q3_sal:,.2f}")
print(f" Maximum: {max_sal:,.2f}")

# Pandas describe() also gives a similar summary
salaries_series = pd.Series(salaries)

print ("\nPandas describe() output for Salaries:")
print(salaries_series.describe() .apply(lambda x: f" {x:,.2f}"))

# Box Plot for salaries

plt.figure(figsize=(6, 4))

sns.boxplot (y=salaries_series) # Using y for vertical boxplot with a Pandas Series
plt.title('Box Plot of Salaries')

plt.ylabel('Salary ()')

plt.grid(True)

plt.show()

Five-Point Summary for Salaries:
Minimum: 30,000.00
Q1 (25th Percentile): 35,000.00
Median (50th Percentile): 40,000.00
Q3 (75th Percentile): 45,000.00
Maximum: 500,000.00

Pandas describe() output for Salaries:

count 5.00
mean 130,000.00
std 206,911.82
min 30,000.00
25% 35,000.00
50% 40,000.00
75% 45,000.00
max 500,000.00

dtype: object
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By utilizing these descriptive statistics—measures of central tendency, dispersion, shape, and
their visual representations like box plots—data analysts can thoroughly explore and under-
stand the fundamental characteristics of their datasets, laying a solid foundation for more
advanced inferential analysis and modeling.

3.7 Problems and Python solutions in descriptive statistics

1. Given the following dataset representing the scores of 10 students on a test: scores = [78,
85, 92, 65, 72, 88, 90, 78, 85, 80] Calculate and interpret the following for this dataset:

a) Mean, Median, Mode

b) Range, Variance, Standard Deviation, IQR

c¢) Skewness and Kurtosis

d) Generate a five-point summary and a box plot.

import numpy as np

import pandas as pd

from scipy import stats

import matplotlib.pyplot as plt
import seaborn as sns

scores = np.array([78, 85, 92, 65, 72, 88, 90, 78, 85, 80])
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scores_series = pd.Series(scores) # Using Pandas Series for convenience with mode and descril

print("Dataset: Student Scores")
print (scores)

# a) Mean, Median, Mode

mean_scores = np.mean(scores)

median_scores = np.median(scores)

mode_scores = stats.mode(scores, keepdims=False).mode # Using SciPy stats for mode of NumPy
# For multiple modes or more robust mode finding with Pandas:

# mode_scores_pd = scores_series.mode()

print(£"\na) Central Tendency:")

print(f" Mean: {mean_scores:.2f}")

print(f" Median: {median_scores:.2f}")

print(f" Mode: {mode_scores}") # If multiple modes, SciPy returns the smallest
# print(f" Mode (Pandas): {list(mode_scores_pd)}")

# b) Range, Variance, Standard Deviation, IQR

range_scores = np.ptp(scores)

variance_scores = np.var(scores, ddof=1) # Sample variance
std_dev_scores = np.std(scores, ddof=1) # Sample standard deviation
ql_scores = np.percentile(scores, 25)

g3_scores = np.percentile(scores, 75)

igr_scores = q3_scores - ql_scores

# iqr_scores_scipy = stats.iqr(scores)

print (£"\nb) Dispersion:")

print(f" Range: {range_scores:.2f}")

print(f" Variance (sample): {variance_scores:.2f}")

print(f" Standard Deviation (sample): {std_dev_scores:.2f}")
print(f" Q1: {ql_scores:.2f}")

print(f" Q3: {g3_scores:.2f}")

print(f" IQR: {iqr_scores:.2f}")

# c) Skewness and Kurtosis
skewness_scores = stats.skew(scores)
kurtosis_scores

stats.kurtosis(scores, fisher=True) # Excess kurtosis

print(£"\nc) Shape:")
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print(f" Skewness: {skewness_scores:.2f}")
print(f" Excess Kurtosis: {kurtosis_scores:.2f}")

# d) Five-point summary and Box plot

print(£"\nd) Five-Point Summary (using Pandas describe()):")

# Using .loc to select specific stats from describe() and format them
summary_stats = scores_series.describe().loc[['min', '25%"', '50%', '75%', 'max']]

print (summary_stats.rename(index={'min': 'Minimum', '25%': 'Q1', '50%': 'Median', '75%':

plt.figure(figsize=(6,4))

sns.boxplot (data=scores_series) # Can directly pass Pandas Series
plt.title('Box Plot of Student Scores')

plt.ylabel('Scores')

plt.grid(True)

plt.show()

Dataset: Student Scores
[78 85 92 65 72 88 90 78 85 80]

a) Central Tendency:

Mean: 81.30
Median: 82.50
Mode: 78

b) Dispersion:
Range: 27.00
Variance (sample): 70.90
Standard Deviation (sample): 8.42
Qi: 78.00
Q3: 87.25
IQR: 9.25

c) Shape:
Skewness: -0.57
Excess Kurtosis: -0.56

d) Five-Point Summary (using Pandas describe()):
Minimum 65.00

Q1 78.00
Median 82.50
Q3 87.25
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Maximum 92.00
dtype: float64

Box Plot of Student Scores
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2. Two brands of light bulbs, Brand A and Brand B, were tested for their lifespan in hours.
The results are: brand_A_ lifespan = [1200, 1250, 1300, 1100, 1150, 1220, 1280, 1180]
brand_ B_ lifespan = [1000, 1500, 1100, 1400, 1050, 1450, 900, 1600]

a) Calculate the mean and median lifespan for each brand.

b) Calculate the standard deviation for each brand.

¢) Which brand appears more consistent in its lifespan based on these statistics?
d) Generate side-by-side box plots to visually compare their distributions.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

brand_A_lifespan = np.array([1200, 1250, 1300, 1100, 1150, 1220, 1280, 1180])
brand_B_lifespan = np.array([1000, 1500, 1100, 1400, 1050, 1450, 900, 1600])

# a) Mean and Median
mean_A = np.mean(brand_A_lifespan)
median_A = np.median(brand_A_lifespan)
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mean_B = np.mean(brand_B_lifespan)
median_B = np.median(brand_B_lifespan)

print ("Brand A Lifespan (hours):", brand A_lifespan)
print("Brand B Lifespan (hours):", brand_B_lifespan)

print(£"\na) Central Tendency:")
print(f" Brand A - Mean: {mean_A:.2f}, Median: {median_A:.2f}")
print(f" Brand B - Mean: {mean_B:.2f}, Median: {median_B:.2f}")

# b) Standard Deviation
std_A = np.std(brand_A_lifespan, ddof=1)
std_B = np.std(brand_B_lifespan, ddof=1)

print(£"\nb) Dispersion (Standard Deviation):")
print(f" Brand A - Std Dev: {std_A:.2f}")
print(f" Brand B - Std Dev: {std_B:.2f}")

# c) Consistency

# Lower standard deviation implies more consistency

consistency_statement = "Brand A" if std_A < std_B else "Brand B"

if std_A == std_B: consistency_statement = "Both brands have similar consistency"

print(£"\nc) Consistency:")
print(f" {consistency_statement} appears more consistent in its lifespan.")

# d) Side-by-side Box Plots

# To use Seaborn for side-by-side plots, it's easier if data is in a "long" format DataFrame
df _A = pd.DataFrame({'Lifespan': brand_A_lifespan, 'Brand': 'Brand A'})

df _B = pd.DataFrame({'Lifespan': brand_B_lifespan, 'Brand': 'Brand B'})

df_lifespans = pd.concat([df_A, df_B])

plt.figure(figsize=(8, 6))

sns.boxplot (x='Brand', y='Lifespan', data=df_lifespans)
plt.title('Comparison of Light Bulb Lifespans')
plt.ylabel('Lifespan (hours)')

plt.grid(True)

plt.show()

Brand A Lifespan (hours): [1200 1250 1300 1100 1150 1220 1280 1180]
Brand B Lifespan (hours): [1000 1500 1100 1400 1050 1450 900 1600]
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a) Central Tendency:
Brand A - Mean: 1210.00, Median: 1210.00
Brand B - Mean: 1250.00, Median: 1250.00

b) Dispersion (Standard Deviation):
Brand A - Std Dev: 66.98
Brand B - Std Dev: 265.92

c) Consistency:
Brand A appears more consistent in its lifespan.

Comparison of Light Bulb Lifespans
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3.8 Unit overview

1. Define an “Al agent” according to Russell and Norvig. What are its essential components
(sensors and actuators)? Provide one example of a software agent and identify its sensors
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10.

11.

12.

13.

14.

15.

16.

17.

and actuators.

. Explain the PEAS framework for describing the task environment of an Al agent. Using

a specific example (e.g., a medical diagnosis system or a spam filter), define its PEAS
characteristics.

. What does it mean for an Al agent to be “rational”? Is rationality the same as omni-

science or “perfect” action? Explain with an example.

. Compare and contrast a “fully observable” environment with a “partially observable”

environment. Provide a clear example for each and explain why this distinction is crucial
for agent design.

. Explain the difference between a “deterministic” and a “stochastic” environment. How

does operating in a stochastic environment impact the complexity of an Al agent’s
decision-making process?

. Distinguish between “episodic” and “sequential” task environments. For which type of

environment is long-term planning more critical for an agent? Justify with examples.

. Describe the characteristics of a “dynamic” environment. What challenges does a dy-

namic environment pose for an Al agent compared to a static one?

. What are the key differences in the decision-making process between a “Simple Reflex

Agent” and a “Model-based Reflex Agent”? When would a model-based approach be
necessary?

. Explain the primary motivation for developing “Goal-based Agents.” How do they rep-

resent an advancement over reflex-based agents in terms of flexibility and foresight?
What is a “Utility-based Agent,” and how does its utility function help in making deci-
sions, especially in situations with conflicting goals or uncertain outcomes? Provide a
scenario where a utility-based approach would be superior to a purely goal-based one.
Briefly describe the main components of a “Learning Agent” (Learning Element, Perfor-
mance Element, Critic, Problem Generator). How do these components enable an agent
to improve its performance over time?

Define “population” and “sample” in the context of statistics. Why do data scientists
often work with samples rather than entire populations?

Explain the difference between a “parameter” and a “statistic.” Provide an example of
each.

Name two different sampling techniques and briefly describe how one of them works.
Why is the choice of sampling technique important for drawing valid inferences in Data
Science?

Calculate the mean, median, and mode for the following dataset of ages: [22, 25, 21,
30, 25, 28, 45, 25]. Which measure of central tendency would be most appropriate
if you wanted to represent the “typical” age while being mindful of potential outliers?
Justify.

For the dataset [10, 15, 12, 18, 25, 12, 16], calculate the range and the sample
standard deviation. What does the standard deviation tell you about the spread of this
data?

What is the Interquartile Range (IQR)? Explain how it is calculated and why it is
considered a robust measure of dispersion.
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18. Define “skewness” in the context of a data distribution. Describe what positive (right)
skewness indicates about the relationship between the mean, median, and mode.

19. Briefly explain what “covariance” measures between two variables. If the covariance
between variable X (hours studied) and variable Y (exam score) is positive, what does
this suggest about their relationship?

20. What is a five-point summary of a dataset? How does a box plot visually represent this
summary and help in identifying potential outliers?
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4 Unit 3: Tools, Processes, and Applications
in Al and DS

4.1 Introduction

In our discussions so far, we have explored the fundamental ideas behind Artificial Intelligence,
the concept of intelligent agents that perceive and act in environments, and the essential
statistical tools used to describe data. Now, in this unit, we transition from these foundational
concepts to the more tangible aspects of doing Al and DS. We will focus on the practical tools
commonly used by professionals, the structured processes that guide data-driven projects,
and some initial examples of how these powerful techniques are applied to solve real-world
challenges.

Our exploration will begin with an introduction to some basic yet powerful tools, primarily
centering on the Python programming language and its rich ecosystem of specialized libraries
which have become indispensable in the AT and DS landscape. Following this, we will undertake
a guided tour of the DS process pipeline. This pipeline offers a systematic framework for
approaching and solving problems using data, taking us from the initial understanding of a
problem all the way through to deploying a solution. A critical aspect of working with data
is understanding its various representations, as data can come in many forms, each requiring
different handling. Equally crucial is the stage of data pre-processing. Raw data, as collected
from the real world, is rarely perfect; it often needs to be cleaned, transformed, and prepared
before it can be effectively used for analysis or to train intelligent models. Finally, we will
touch upon some elementary applications of AI and DS. These examples will provide a glimpse
into the practical power of these fields and serve as a bridge to more advanced topics you might
encounter in your future studies.

By the conclusion of this unit, you should have a good familiarity with common software
tools used in the field, a clear understanding of the typical workflow involved in a DS project,
a strong appreciation for why data quality and preparation are foremost important, and a
recognition of some basic ways Al and DS are applied to create value.
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4.2 Basic Tools for Al and DS

While the world of Al and DS is supported by a vast array of software tools and platforms, one
programming language, Python, along with its extensive collection of specialized libraries, has
emerged as a near-universal standard. Python’s popularity stems from its inherent readability,
its versatility across a wide range of tasks, and the robust support provided by its large and
active global community. We have already encountered Python in our earlier discussions on
statistical calculations, and now we will look more closely at the libraries that make it so
powerful for Al and DS.

4.2.1 Python: The language for Al & DS

Python’s design philosophy emphasizes code readability and a syntax that allows programmers
to express concepts in fewer lines of code than might be possible in languages like C++ or
Java. This makes it relatively easy for beginners to learn and for experienced programmers
to quickly prototype and experiment with new ideas, which is particularly valuable in the
iterative world of data analysis and model development.

4.2.2 Key Python libraries for Al and DS

Several external libraries significantly extend Python’s native capabilities, transforming it into
a highly effective environment for complex data manipulation, numerical computation, ma-
chine learning, and visualization.

o NumPy (Numerical Python): The foundation for numerical computation

At the heart of much scientific computing in Python lies NumPy. It is the fun-
damental package for numerical computation, providing robust support for large,
multi-dimensional arrays and matrices. Think of a NumPy array as a powerful, grid-like
data structure that can hold numbers. Beyond just storing these numbers,NumPy offers
a vast collection of high-level mathematical functions designed to operate efficiently on
these arrays.

Key features that make NumPy indispensable include its ndarray object, which is an
efficient way to store and manipulate numerical data, along with tools for common array
operations like selecting specific elements (slicing and indexing), changing the shape of
arrays (reshaping), performing linear algebra calculations, conducting Fourier transforms,
and generating random numbers. The efficiency of NumPy’s operations is a critical factor
when dealing with the large datasets often encountered in Al and DS. Furthermore, many
other cornerstone libraries, including Pandas and Scikit-learn, are built directly on
top of NumPy and utilize its ndarray as their primary data structure.

Let’s see a simple example:
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import numpy as np

# We can create a NumPy array from a Python list
my_list = [1, 2, 3, 4, 5]

arr = np.array(my_list)

print (£"This is our NumPy array: {arr}")

# NumPy allows for efficient element-wise operations

# For instance, squaring every element in the array
arr_squared = arr ** 2

print (f"Our array with each element squared: {arr_squared}")

# NumPy also handles multi-dimensional arrays, like matrices
matrix = np.array([[10, 20], [30, 40]11)
print(£"This is a 2D NumPy array (a matrix):\n{matrixl}")

This is our NumPy array: [1 2 3 4 5]
Our array with each element squared: [ 1 4 9 16 25]
This is a 2D NumPy array (a matrix):
[[10 20]
[30 40]1]

Pandas: Data analysis and manipulation made easy

While NumPy provides the numerical backbone, Pandas offers high-performance, intuitive
data structures and a rich set of tools specifically designed for practical data analysis.
The two primary data structures in Pandas are the Series and the DataFrame. A Series
can be thought of as a single column of data (a 1D labeled array), while a DataFrame
is a 2D labeled data structure with columns of potentially different types, much like a
spreadsheet, a SQL table, or a dictionary of Series objects.

Pandas excels at tasks such as reading data from and writing data to a multitude of
formats (including CSV files, Excel spreadsheets, SQL databases, and JSON). It provides
powerful features for aligning data, handling missing values (a very common issue in real-
world datasets), merging or joining different datasets together, reshaping data layouts,
sophisticated indexing and slicing capabilities for selecting subsets of data, grouping data
based on certain criteria to perform aggregate calculations, and specialized functionality
for working with time series data. For data scientists and analysts, Pandas significantly
simplifies the often complex and tedious processes of data cleaning, transformation, and
exploration.

Here’s a glimpse of Pandas in action:
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import pandas as pd

# Creating a Pandas Series, which is like a labeled 1D array

student_scores = pd.Series([85, 92, 78, 95], index=['Alice', 'Bob', 'Charlie',

print (£f"A Pandas Series representing student scores:\n{student_scores}")
print(f"Score for Bob: {student_scores['Bob']}")

# Creating a Pandas DataFrame, which is like a table
student_data = {'StudentName': ['Alice', 'Bob', 'Charlie', 'David'l],
"Age': [21, 22, 20, 23],
'Major': ['CompSci', 'Physics', 'Math', 'CompSci'l}
students_df = pd.DataFrame(student_data)
print (£"\nA Pandas DataFrame with student information:\n{students_df}")

# We can easily access a specific column from the DataFrame

print(f"\nJust the 'Major' column from our DataFrame:\n{students_df['Major']l}")

A Pandas Series representing student scores:

Alice 85
Bob 92
Charlie 78
David 95

Name: Exam Scores, dtype: int64
Score for Bob: 92

A Pandas DataFrame with student information:
StudentName Age Major
Alice 21 CompSci
Bob 22 Physics
Charlie 20 Math
David 23 CompSci

w N = O

Just the 'Major' column from our DataFrame:

0 CompSci
1 Physics
2 Math

3 CompSci
Name: Major, dtype: object

Matplotlib & Seaborn: Visualizing data

Data visualization is an indispensable part of the DS workflow. It allows us to explore
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data graphically, uncover patterns, identify outliers, understand relationships between
variables, and effectively communicate findings to others. Matplotlib is the foundational
plotting library in Python, offering a wide range of capabilities for creating static, ani-
mated, and interactive visualizations. It can produce line plots, scatter plots, bar charts,
histograms, pie charts, error charts, 3D plots, and much more, with a high degree of
customization.

Seaborn is another powerful visualization library that is built on top of Matplotlib. It
provides a higher-level interface specifically designed for creating attractive and infor-
mative statistical graphics. Seaborn often makes it easier to generate common types of
statistical plots like box plots (which we discussed in Unit 2), violin plots, heatmaps,
distribution plots (like enhanced histograms), and plots that show relationships along
with regression lines. It also comes with more aesthetically pleasing default styles.

Let’s illustrate with a couple of simple plots:

import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np # Re-importing for clarity if this cell is run standalone

# Let's generate some sample data for our plots

x_values = np.linspace(-np.pi, np.pi, 200) # 200 points from -pi to pi

y_sine_values = np.sin(x_values)

y_cosine_values = np.cos(x_values)

some_random_data = np.random.normal(loc=0, scale=1, size=500) # 500 numbers from a norma

# An example using Matplotlib to plot sine and cosine waves

plt.figure(figsize=(10, 5)) # Set the figure size

plt.plot(x_values, y_sine_values, label='Sine Wave', color='blue')

plt.plot(x_values, y_cosine_values, label='Cosine Wave', color='red', linestyle='--"')
plt.title('Sine and Cosine Waves using Matplotlib')

plt.xlabel('X (radians)')

plt.ylabel('Y (value)')

plt.legend() # Show the legend

plt.grid(True) # Add a grid

plt.show() # Display the plot

# An example using Seaborn to plot a histogram (distribution plot) of random data
plt.figure(figsize=(10, 5))

sns.histplot(some_random_data, bins=30, kde=True, color='green') # kde adds a density cu
plt.title('Distribution of Random Data using Seaborn')

plt.xlabel('Value')

plt.ylabel('Frequency')

plt.show()
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Sine and Cosine Waves using Matplotlib
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The adage "a picture is worth a thousand words" is particularly true in data analysis, and tl

o Scikit-learn (sklearn): ML toolkit
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When it comes to implementing machine learning algorithms, Scikit-learn (often im-
ported as sklearn) is one of the most popular, comprehensive, and user-friendly libraries
available in Python. It provides a vast array of simple and efficient tools for various data
mining and data analysis tasks.

Scikit-learn’s capabilities cover a wide spectrum of machine learning, including:

— Classification: Algorithms for identifying which category an object belongs to
(e.g., classifying an email as spam or not spam).

— Regression: Algorithms for predicting a continuous-valued attribute associated
with an object (e.g., predicting the price of a house).

— Clustering: Algorithms for automatically grouping similar objects into sets or
clusters when you don’t have pre-defined labels.

— Dimensionality Reduction: Techniques for reducing the number of variables
under consideration, which can be useful for simplifying models and improving
performance.

— Model Selection: Tools for comparing, validating, and choosing the best param-
eters and models for your specific problem.

— Preprocessing: A suite of functions for feature extraction, normalization, and
other data preparation tasks necessary before feeding data to machine learning
models.

What makes Scikit-1learn so valuable is its consistent and easy-to-use API (Application
Programming Interface). It allows data scientists and machine learning practitioners to
implement various algorithms without getting bogged down in the complex mathematical
details of each algorithm’s implementation, enabling them to focus more on solving the
actual problem. It is built on top of NumPy, SciPy (another scientific computing library),
and Matplotlib. While we will delve deeper into specific Scikit-learn functionalities
in later parts of this unit and more advanced courses, it is essential to recognize it as a
core component of the AT and DS toolkit from the outset.

Here’s a very high-level conceptual example of how one might approach a simple predic-
tive task using Scikit-learn (more detailed explanations will follow):

from sklearn.model_selection import train_test_split # For splitting data

from sklearn.linear_model import LinearRegression # A simple regression model
# from sklearn.metrics import mean_squared_error # For evaluating the model
import numpy as np # Re-importing

# Let's imagine we have some very simple data:

# X represents a single feature (e.g., years of experience)

# y represents a target variable we want to predict (e.g., salary)

X_feature_sample = np.array([1, 2, 3, 4, 5, 6, 7, 8]).reshape(-1, 1) # Needs to be a 2D
y_target_sample = np.array([30, 35, 40, 45, 50, 53, 58, 60])
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# A common practice is to split data into a training set and a testing set

# The model learns from the training set and is then evaluated on the unseen testing set
X_train, X_test, y_train, y_test = train_test_split(X_feature_sample, y_target_sample, t

# We create an instance of a Linear Regression model
simple_linear_model = LinearRegression()

# We then "train" or "fit" the model using our training data
simple_linear_model.fit(X_train, y_train)

# Now we can use the trained model to make predictions on our test data
predictions_on_test_data = simple_linear_model.predict(X_test)

print (f"A conceptual Linear Regression Example:")
print(f" Test features (X_test):\n{X_test}")
print(f" Actual target values for test features (y_test): {y_testl}")

print(f" Predicted target values by the model: {predictions_on_test_data.round(2)}") # I

# We could then calculate an error metric like Mean Squared Error:

# print(f" Mean Squared Error on test data: {mean_squared_error(y_test, predictions_on_’
print(f" The model learned a slope (coefficient) of: {simple_linear_model.coef_[0]:.2f}

print(f" The model learned an intercept of: {simple_linear_model.intercept_:.2f}")

A conceptual Linear Regression Example:
Test features (X_test):
(7]
[3]]
Actual target values for test features (y_test): [58 40]
Predicted target values by the model: [57.1 39.7]
The model learned a slope (coefficient) of: 4.35
The model learned an intercept of: 26.65

This simple demonstration hints at the power Scikit-learn provides for building predictive
models.

While these libraries — NumPy, Pandas, Matplotlib, Seaborn, and Scikit-learn — form the
foundational toolkit for most general Al and DS tasks, the Python ecosystem is vast. Many
other specialized libraries cater to specific advanced areas, such as deep learning (with pop-
ular frameworks like TensorFlow, PyTorch, and Keras), more advanced natural language
processing (with libraries like NLTK and spaCy), and various other specialized analytical do-
mains. Gaining a solid proficiency with these core libraries is the essential first step on your
journey.
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4.3 Introduction to DS Process Pipeline

Successfully tackling problems using DS is rarely a haphazard endeavor; it typically follows
a structured, albeit iterative, workflow known as the DS process pipeline. While specific
adaptations and names for stages might vary across organizations or projects, the underlying
sequence of activities generally remains consistent. Understanding this pipeline provides a
roadmap for transforming raw data into actionable insights or intelligent products.
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Figure 4.1: DS Process Pipeline

4.3.1 Business Understanding or Problem Definition

The journey usually begins with business understanding or problem definition. This crucial
first phase involves clearly articulating the problem that needs to be solved or the question that
needs an answer, from a business or domain-specific perspective. What are the overarching
goals? What specific outcomes are desired? How will the success of the project be measured?
Activities during this stage often include discussions with stakeholders to grasp the domain
context, translating broad business challenges into well-defined DS questions, and carefully
outlining the project’s scope and objectives. Without a lucid understanding of the problem,
even the most sophisticated subsequent analytical efforts risk being misdirected and ultimately
irrelevant.
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4.3.2 Data Acquisition

Once the problem is well understood, the next stage is Data Acquisition, also referred to as
data collection. The objective here is to gather all the data necessary to address the defined
problem. This involves identifying potential data sources, which could range from internal
company databases, external APIs (Application Programming Interfaces) that provide access
to third-party data, information scraped from websites, simple flat files like CSVs or text
documents, or even data streamed from sensors. After identifying sources, the data must be
collected, and its format and structure must be understood. The quality and relevance of the
data acquired at this stage will profoundly influence the quality of the insights derived and the
performance of any models built later. The old adage “Garbage In, Garbage Out” (GIGO) is
particularly pertinent here.

4.3.3 EDA

With data in hand, the focus shifts to data understanding and exploratory data analysis (EDA).
The goal of this phase is to develop a deep familiarity with the dataset’s characteristics. This
involves examining its quality, identifying potential patterns, understanding relationships be-
tween different variables, and generally getting a “feel” for the data. Common activities include
calculating descriptive statistics (as we learned in Unit 2, such as mean, median, standard de-
viation), creating various data visualizations (like histograms to see distributions, scatter plots
to examine relationships between two numerical variables, and box plots to compare groups or
identify outliers), systematically checking for missing values and their patterns, and spotting
any unusual or extreme data points (outliers). EDA is an investigative process that helps in
refining initial hypotheses about the data, guiding decisions about which features (variables)
might be most important for an analysis, and informing the selection of appropriate modeling
techniques for later stages. It is a critical step for uncovering preliminary insights even before
any formal modeling begins.

4.3.4 Data Preparation

Following EDA, we enter what is often the most time-consuming and labor-intensive phase of
the pipeline: data preparation. This stage, also known by terms like data pre-processing, data
munging, or data wrangling, is dedicated to transforming raw, often messy, data into a clean,
consistent, and suitable format for effective modeling. High-quality analytical models can only
be built upon high-quality data. The specific activities in data preparation are diverse and
depend heavily on the nature of the data and the intended analysis. We will delve deeper into
these techniques in section 3.4, but they generally include tasks like handling missing data,
correcting errors, removing duplicate entries, managing outliers, transforming data scales, and
encoding data into numerical formats that algorithms can understand.
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4.3.5 Modeling

Once the data is adequately prepared, the modeling stage begins. Here, the objective is to
select, build, and train appropriate analytical or machine learning models designed to address
the problem defined in the initial phase. This involves choosing algorithms suitable for the
task at hand — for example, linear regression for predicting a continuous value, decision trees
or logistic regression for classification tasks, or k-means for clustering data into groups. A
crucial part of modeling is typically splitting the prepared data into a training set, which is
used to “teach” the model, and a testing set, which is kept separate and used later to evaluate
how well the model performs on unseen data. The model’s internal parameters are adjusted
(or “tuned”) during the training process to best capture the patterns in the training data.

4.3.6 Evaluation

After a model (or several candidate models) has been trained, it must undergo rigorous eval-
uation. The purpose of this stage is to assess the model’s performance, robustness, and its
ability to generalize to new, unseen data, thereby ensuring it meets the project’s objectives.
Evaluation involves using appropriate metrics tailored to the type of model and problem. For
instance, classification models might be evaluated using accuracy, precision, recall, or F1-score,
while regression models might use Mean Squared Error (MSE) or R-squared. A key activity
is testing the model on the previously set-aside test data. Techniques like cross-validation
are also often employed to get a more reliable estimate of performance. Comparing different
models or different versions of the same model (with different settings) is also part of this
stage. Proper evaluation is vital to prevent issues like overfitting, where a model learns the
training data too well, including its noise, and consequently performs poorly on new data.

4.3.7 Deployment

If a model performs satisfactorily during evaluation, it can proceed to the deployment phase.
This is where the validated model is integrated into a production environment or an existing
business process so that it can start delivering tangible value. Deployment can take many
forms: it might involve creating an API that allows other software systems to send data to
the model and receive its predictions, building interactive dashboards that present the model’s
insights to business users, or embedding the model directly within an application.

4.3.8 Monitoring and Maintenance
Finally, the DS pipeline doesn’t truly end with deployment. The monitoring and maintenance

stage is an ongoing process crucial for the long-term success of any deployed AI or DS solution.
The objective here is to continuously monitor the model’s performance in the live environment
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and to update or retrain it as necessary. Over time, the statistical properties of the data being
fed to the model might change (a phenomenon known as “concept drift”), or the underlying
relationships the model learned might no longer hold true. Regular monitoring helps detect
such degradation in performance, and periodic retraining with fresh data ensures the model
remains relevant and effective.

It is essential to recognize that this pipeline is highly iterative. Data scientists frequently
move back and forth between these stages. For example, insights gained during Exploratory
Data Analysis might reveal significant data quality issues, necessitating a return to the Data
Acquisition or Data Preparation stages. Similarly, if model evaluation shows poor performance,
it might prompt a re-evaluation of the features used (leading back to Data Preparation or EDA),
the choice of model, or even a refinement of the initial problem definition. This iterative nature
is a hallmark of practical DS work.

4.4 Different Representations of Data

Data, the raw material of Al and DS, manifests in a variety of forms. Understanding these
different representations is fundamental to selecting the appropriate methods for storage, pro-
cessing, analysis, and visualization. Broadly, data can be categorized into structured, unstruc-
tured, and semi-structured types.

Structured Data is characterized by its high degree of organization. It adheres to a pre-
defined data model or schema, meaning its format and the types of data it can hold are
explicitly defined beforehand. The most common representation of structured data is tabular,
consisting of rows (representing individual records or observations) and columns (representing
specific attributes or features of those records). Each column typically has a well-defined data
type, such as integer, string, date, or boolean. This kind of data is commonly found in relational
databases (managed by systems like MySQL, PostgreSQL, or Oracle) and spreadsheets (like
Microsoft Excel or Google Sheets). The inherent organization of structured data makes it
relatively straightforward to query, manage, and analyze using traditional data processing
tools, including SQL (Structured Query Language). Examples abound in everyday business
operations: customer records stored in a Customer Relationship Management (CRM) system,
detailed sales transactions, or employee information managed by an Human Resources (HR)
system are all typically structured data. In Python, the Pandas library, with its DataFrame
object, provides an exceptionally powerful and convenient way to work with structured, tabular
data.

In stark contrast, Unstructured Data lacks a pre-defined data model or an inherent organiza-
tional framework. It does not fit neatly into the rows and columns of traditional databases.
This category encompasses a vast and rapidly growing amount of information, often in textual
or multimedia formats. Examples include the content of text documents such as emails, news
articles, books, and social media posts; visual information like images and photographs; audio
files such as voice recordings and music; and video files. The absence of a rigid structure makes
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unstructured data more challenging to process and analyze using conventional methods. Spe-
cialized techniques, often drawing from fields like Natural Language Processing (NLP) for text,
computer vision for images, and signal processing for audio, are required to extract meaningful
features and insights from this type of data. In Python, specific libraries are used to handle
different forms of unstructured data: NLTK (Natural Language Toolkit) and spaCy are popular
for text processing; Pillow or OpenCV (Open Source Computer Vision Library) are used for
image manipulation and analysis; and Librosa is a common choice for working with audio
signals. A key step in analyzing unstructured data is often feature extraction — the process
of converting the raw unstructured content into a structured format (e.g., numerical vectors)
that can then be fed into analytical models.

Bridging the gap between these two extremes is Semi-structured Data. This type of data does
not conform to the strict relational structure of traditional databases but possesses some orga-
nizational properties, often through the use of tags, markers, or hierarchical arrangements that
separate semantic elements. It is essentially a hybrid, exhibiting some degree of structure with-
out being as rigidly defined as fully structured data. A key characteristic of semi-structured
data is that it is often self-describing; the tags or markers within the data itself provide in-
formation about its structure and meaning. Common examples include JSON (JavaScript
Object Notation) files, which are widely used for data interchange on the web due to their
human-readable text format and simple key-value pair structure. Another example is XML
(eXtensible Markup Language) documents, which use tags to define elements and their at-
tributes, allowing for complex hierarchical data representations. Data stored in many NoSQL
databases, such as document databases like MongoDB, also often falls into the semi-structured
category. Python offers built-in libraries for handling these formats, such as the json mod-
ule for working with JSON data and the xml.etree.ElementTree module for parsing XML.
Moreover, the versatile Pandas library can often parse JSON and XML data, converting it
into its familiar DataFrame structure for easier analysis.

Let’s look at a simple example of how Python handles JSON, a common semi-structured
format:

import json

# Imagine we have a string containing data in JSON format
# This could have come from a file or an API response
json_data_string = '''

{
"bookTitle": "The Art of DS",
"authors": [
{"firstName": "Jane", "lastName": "Doe"},
{"firstName": "John", "lastName": "Smith"}
1.
"publicationYear": 2023,
"topics": ["Statistics", "Machine Learning", "Visualization"],
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"jsBestseller": true

# We can "load" this JSON string into a Python dictionary
# This makes the data easily accessible in our Python program
book_details_dict = json.loads(json_data_string)

# Now we can access elements of the data like a regular Python dictiomary

print(£f"The title of the book is: {book_details_dict['bookTitle']}")

print(f"The first author's last name is: {book_details_dict['authors'][0]['lastName']}")
print(£f"One of the topics covered is: {book_details_dict['topics'][1]}")

print(£f"Is it a bestseller? {book_details_dict['isBestseller']}")

The title of the book is: The Art of DS

The first author's last name is: Doe

One of the topics covered is: Machine Learning
Is it a bestseller? True

This example demonstrates how easily Python can parse and interact with semi-structured
JSON data, making it accessible for further processing and analysis.

A comprehensive understanding of these different data representations—structured, unstruc-
tured, and semi-structured—is essential for any data professional. It guides the selection of
appropriate storage solutions, informs the choice of data processing techniques, and dictates
the analytical tools that can be effectively employed. Many real-world projects involve a blend
of these data types, requiring a versatile skill set to manage and extract value from them all.

4.4.1 Importance of pre-processing the data

The journey from raw data to meaningful insights or effective Al models is rarely straightfor-
ward. Data collected from real-world sources — be it from databases, user interactions, sensors,
or external feeds — is often far from perfect. It can be messy, riddled with inconsistencies,
plagued by missing information, and generally not in a state suitable for direct input into
analytical algorithms or machine learning models. This is where data pre-processing plays a
pivotal role. It is a critical, and often the most time-consuming, phase in the DS pipeline. Data
pre-processing encompasses a collection of techniques used to clean, transform, and organize
raw data, with the ultimate goal of improving its quality and making it amenable to the sub-
sequent stages of analysis and modeling. The quality of your input data directly dictates the
quality of your output; therefore, neglecting or inadequately performing data pre-processing
can lead to inaccurate models, misleading conclusions, and ultimately, a failed project. The
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well-known adage “Garbage In, Garbage Out” (GIGO) emphatically applies to this stage. The
tasks involved in data pre-processing are diverse and depend heavily on the specific dataset
and the objectives of the analysis. However, some common categories of pre-processing steps
include Data Cleaning, Data Transformation, and Data Reduction.

4.4.1.1 Data cleaning

Data cleaning focuses on identifying and rectifying errors, inconsistencies, and missing infor-
mation within the dataset. A very common issue is handling missing values. Often, datasets
will have entries where data is absent or was not recorded. How these missing values are dealt
with can significantly impact the analysis. Several strategies exist:

e One approach is deletion, which involves removing records (rows) that contain missing
values, or even entire features (columns) if they have an excessive proportion of missing
data and are deemed not critical. Row deletion is generally viable if only a small number
of records are affected and the dataset is large enough to absorb the loss.

¢ A more common approach is imputation, which involves filling in the missing values with
plausible substitutes. For numerical features, missing values might be replaced with the
mean or median of that feature. For categorical features, the mode (the most frequent
category) is often used. More sophisticated imputation techniques also exist, such as
using regression models or k-Nearest Neighbors to predict the missing values based on
other information in the dataset.

Let’s illustrate imputation with Python and Pandas:

import pandas as pd
import numpy as np # For creating np.nan (Not a Number) to represent missing values

# Sample DataFrame with some missing values
raw_data = {'FeatureA': [10, 20, np.nan, 40, 10, 60],
'FeatureB': [100, 120, 110, np.nan, 100, 140],
'Category': ['Alpha', 'Beta', np.nan, 'Alpha', 'Gamma', 'Beta'l}
df _with_missing = pd.DataFrame(raw_data)
print("Original DataFrame with missing values:")
print (df_with_missing)

# Strategy 1: Fill missing numerical values with the mean of their respective columns

df _mean_imputed = df _with_missing.copy() # Work on a copy

df _mean_imputed['FeatureA'] = df_mean_imputed['FeatureA'].fillna(df_mean_imputed['FeatureA']
df _mean_imputed['FeatureB'] = df_mean_imputed['FeatureB'].fillna(df_mean_imputed['FeatureB']
print("\nDataFrame after mean imputation for FeatureA and FeatureB:")

print (df_mean_imputed)
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# Strategy 2: Fill missing categorical values with the mode of that column
df _mode_imputed = df_with_missing.copy()

mode_category = df_mode_imputed['Category'].mode() [0] # mode() can return multiple if ties,
df _mode_imputed['Category'] = df_mode_imputed['Category'].fillna(mode_category)
print("\nDataFrame after mode imputation for Category:")

print(df_mode_imputed)

# Strategy 3: Drop rows that contain any missing value

df _rows_dropped = df_with_missing.dropna() # Removes rows with any Nal
print ("\nDataFrame after dropping rows with any missing values:")
print (df _rows_dropped)

Original DataFrame with missing values:
FeatureA FeatureB Category

0 10.0 100.0 Alpha
1 20.0 120.0 Beta
2 NaN 110.0 NaN
3 40.0 NaN Alpha
4 10.0 100.0 Gamma
5 60.0 140.0 Beta

DataFrame after mean imputation for FeatureA and FeatureB:
FeatureA FeatureB Category

0 10.0 100.0  Alpha
1 20.0 120.0 Beta
2 28.0 110.0 NaN
3 40.0 114.0  Alpha
4 10.0 100.0  Gamma
5 60.0 140.0 Beta

DataFrame after mode imputation for Category:
FeatureA FeatureB Category

0 10.0 100.0 Alpha
1 20.0 120.0 Beta
2 NaN 110.0 Alpha
3 40.0 NaN Alpha
4 10.0 100.0 Gamma
5 60.0 140.0 Beta

DataFrame after dropping rows with any missing values:
FeatureA FeatureB Category
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0 10.0 100.0 Alpha
1 20.0 120.0 Beta
4 10.0 100.0 Gamma
5 60.0 140.0 Beta

The choice of imputation strategy depends on the nature of the data and the extent of miss-
ingness. Another aspect of data cleaning is handling noisy data, which includes addressing
errors, correcting meaningless entries, or dealing with outliers. Outliers are data points that
deviate significantly from the majority of other observations in the dataset. They can arise
from measurement errors, data entry mistakes, or genuinely unusual occurrences. Strategies
for dealing with noisy data include manual or programmatic correction of obvious errors (like
typos in text fields). For outliers, treatment options include deletion (if they are confirmed
errors or clearly unrepresentative), data transformation (e.g., applying a logarithmic trans-
formation to a skewed feature can reduce the influence of high-value outliers), capping or
Winsorizing (where extreme values are replaced by the nearest “acceptable” value, such as the
99th percentile), or binning, where numerical values are grouped into discrete intervals, which
can help smooth out noise. Finally, data cleaning often involves removing duplicate records
to ensure that each observation is unique and to prevent bias in the analysis.

4.4.1.2 Data transformation

Data transformation involves modifying the data into a more suitable format or scale for
analysis and modeling. A common and important transformation is Normalization or Stan-
dardization, also known as Feature Scaling. Numerical features in a dataset often have vastly
different scales and ranges (for example, a person’s age might range from 0 to 100, while
their income might range from tens of thousands to millions). Many machine learning al-
gorithms, particularly those that rely on distance calculations (like k-Nearest Neighbors or
Support Vector Machines) or use gradient descent for optimization (like linear regression or
neural networks), can perform poorly or converge slowly if features are on drastically different
scales. Feature scaling brings all numerical features onto a comparable scale.

o Normalization (Min-Max Scaling) rescales the data to a fixed range, typically between 0

and 1. The formula is
(X B Xmin)

normalized — (X _X

max min)

X

o Standardization (Z-score Normalization) transforms the data so that it has a mean of 0
and a standard deviation of 1. The formula is :
x (X —mean(X))
standardized — Std€U<X>

Let’s see this in Python using Scikit-learn:
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from sklearn.preprocessing import MinMaxScaler, StandardScaler
import numpy as np # Re-importing for clarity

# Sample data with varying scales
data_for_scaling = np.array([[1000, 0.5],

[2000, 1.0],
[3000, 2.5],
[4000, 5.0],
[10000, 10.0]]1, dtype=float)
df _to_scale = pd.DataFrame(data_for_scaling, columns=['Salary', 'ExperienceYears'])

print("Original data for scaling:")
print(df_to_scale)

min_max_scaler = MinMaxScaler ()

normalized_array = min_max_scaler.fit_transform(df_to_scale)

df _normalized = pd.DataFrame(normalized_array, columns=df_to_scale.columns)
print("\nData after Min-Max Normalization (scaled to 0-1):")

print (df_normalized)

standard_scaler = StandardScaler ()

standardized_array = standard_scaler.fit_transform(df_to_scale)

df _standardized = pd.DataFrame(standardized_array, columns=df_to_scale.columns)
print("\nData after Standardization (mean~0, std~1):")

print(df_standardized)

Original data for scaling:
Salary ExperienceYears

0 1000.0 0.5
1 2000.0 1.0
2 3000.0 2.5
3  4000.0 5.0
4 10000.0 10.0

Data after Min-Max Normalization (scaled to 0-1):
Salary ExperienceYears

0 0.000000 0.000000
1 0.111111 0.052632
2 0.222222 0.210526
3 0.333333 0.473684
4 1.000000 1.000000

Data after Standardization (mean~0, std~1):
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Salary ExperienceYears

0 -0.948683 -0.950255
1 -0.632456 -0.806277
2 -0.316228 -0.374343
3 0.000000 0.345547
4 1.897367 1.785328

Another crucial transformation is Encoding Categorical Data. Most machine learning algo-
rithms are designed to work with numerical input and cannot directly process categorical data
(textual labels). Therefore, categorical features must be converted into a numerical represen-
tation.

o Label Encoding assigns a unique integer to each distinct category (e.g., if categories
are ‘Red’, ‘Green’, ‘Blue’, they might become 0, 1, 2 respectively). This is suitable for
ordinal categorical data where the numerical order has meaning. However, if applied
to nominal data (where categories have no inherent order), algorithms might incorrectly
interpret these numbers as having an ordinal relationship (e.g., implying Blue is “greater”
than Green).

e One-Hot Encoding addresses this issue for nominal data. It creates new binary (0 or 1)
columns for each unique category in the original feature. For any given data record, the
column corresponding to its category will have a value of 1, and all other newly created
columns for that original feature will have a value of 0. This method avoids implying
any ordinal relationship but can lead to a significant increase in the number of features
(high dimensionality) if the original categorical feature has many unique categories.

Python’s Pandas library provides convenient functions for these encoding tasks:
import pandas as pd # Re-importing for clarity

# Sample DataFrame with a categorical feature
employee_data = {'EmployeeID': [1, 2, 3, 4, 5],

'Department': ['Sales', 'HR', 'Tech', 'Sales', 'HR']}
df _employees = pd.DataFrame(employee_data)
print("Original DataFrame with a categorical 'Department' feature:")
print (df_employees)

# Label Encoding example using Pandas factorize()

# factorize returns both the integer labels and the unique categories

df _employees['Department_LabelEncoded'], department_categories = pd.factorize(df_employees['!
print ("\nDataFrame with Label Encoded 'Department':")

print (df_employees[['Department', 'Department_LabelEncoded']])

print("Unique department categories for label encoding:", department_categories)
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# One-Hot Encoding example using Pandas get_dummies()

df_one_hot_encoded = pd.get_dummies(df_employees['Department'], prefix='Dept')

# We can join this back to the original DataFrame if needed

df _employees_final = pd.concat([df_employees.drop(columns=['Department_LabelEncoded']), df_o:
print("\nDataFrame after One-Hot Encoding 'Department':")

print(df_employees_final)

Original DataFrame with a categorical 'Department' feature:
EmployeeID Department

0 1 Sales
1 2 HR
2 3 Tech
3 4 Sales
4 5 HR

DataFrame with Label Encoded 'Department':
Department Department_LabelEncoded

0 Sales 0
1 HR 1
2 Tech 2
3 Sales 0
4 HR 1

Unique department categories for label encoding: Index(['Sales', 'HR', 'Tech'], dtype='objec

DataFrame after One-Hot Encoding 'Department':
EmployeeID Department Dept_HR Dept_Sales Dept_Tech

0 1 Sales False True False
1 2 HR True False False
2 3 Tech False False True
3 4 Sales False True False
4 5 HR True False False

Other transformations include Binning or Discretization, which involves converting continu-
ous numerical data into a finite number of discrete bins or categories (e.g., grouping ages
into “Child,” “Adolescent,” “Adult,” “Senior”). This can sometimes help manage non-linear
relationships in the data or reduce the impact of minor variations or noise.

4.4.1.3 Data reduction

Data reduction techniques aim to reduce the volume or complexity of the data while striving
to preserve the essential information it contains.
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¢ One common approach is Dimensionality Reduction, which is particularly relevant when
dealing with datasets that have a very large number of features (variables). High di-
mensionality can lead to computational inefficiency, make models harder to interpret,
and increase the risk of a phenomenon known as the “curse of dimensionality” (where
data becomes sparse in high-dimensional space, making it harder for algorithms to find
patterns). Dimensionality reduction can be achieved through:

e Feature Selection: Involves selecting a subset of the most relevant original features for
the analysis, discarding less important ones.

o Feature Extraction: Involves creating new, smaller set of features by combining or trans-
forming the original features (e.g., Principal Component Analysis - PCA, is a popular
technique for this).

Another form of data reduction is numerosity reduction, which aims to reduce the number of
data records (rows) while maintaining data integrity as much as possible. This can be done
through various sampling techniques or by aggregating data.

1 Importance of data processing

Effective data pre-processing is not merely a series of mechanical steps; it demands care-
ful judgment, a good understanding of the data’s context (domain knowledge), and an
awareness of how different pre-processing choices can impact the subsequent analysis and
modeling stages. It is an iterative process that often requires experimentation to find the
optimal preparation strategy for a given dataset and problem.

4.5 Elementary Applications of Al and DS

Having acquainted ourselves with essential tools, the structured DS process, and the critical
importance of data preparation, we can now explore some elementary yet illustrative applica-
tions of AI and DS. These examples often draw upon fundamental concepts from supervised
learning (where models learn from labeled data) or unsupervised learning (where models find
patterns in unlabeled data), which are topics typically explored in greater depth in subsequent,
more specialized courses.

4.5.1 Classification tasks

A common task in Al and DS is classification. The goal here is to build a model that can take
an input instance (described by a set of features) and assign it to one of several pre-defined
categories or classes. A widely understood example is Spam Email Detection. The problem
is to automatically determine whether an incoming email is unsolicited junk mail (spam) or
legitimate email (often called “ham”). To build such a system, one would typically start with
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a dataset of emails, where each email has already been labeled by humans as either “spam”
or “ham.” The features extracted from these emails could include the presence or absence of
certain keywords (e.g., “free,” “winner,” “urgent,” “money”), characteristics of the sender’s

email address, the structure of the email, the number of links, and so on.

The approach would involve pre-processing this data, which for text often means converting
the email content into a numerical format that algorithms can work with (e.g., using techniques
like “bag-of-words” to count word occurrences, or more advanced methods like TF-IDF scores
which reflect how important a word is to a document in a collection). Once the features are
prepared, a classification algorithm (such as Naive Bayes, Logistic Regression, or a Support
Vector Machine) is trained on this labeled dataset. During training, the algorithm learns the
patterns and characteristics that tend to distinguish spam emails from legitimate ones. After
the model is trained and evaluated, it can then be used to predict the class (spam or ham) for
new, unseen emails by extracting their features and feeding them into the model. Libraries
like Scikit-learn in Python provide comprehensive tools both for extracting features from text
and for implementing a wide variety of classification algorithms.

4.5.2 Regression tasks

Another fundamental application is regression. Unlike classification, where the goal is to
predict a category, regression aims to predict a continuous numerical value.

A classic example is house price prediction. The objective here is to predict the likely selling
price of a house based on its various characteristics. The data for such a problem would typi-
cally consist of a collection of records for houses that have already been sold. Each record would
include features such as the house’s size (e.g., square footage), the number of bedrooms and
bathrooms, its geographical location (which might need to be encoded numerically), the age
of the house, and, crucially, its actual selling price (the target variable we want to predict).

The process would involve pre-processing this data — for instance, handling any missing values
for features, converting categorical features like location into a numerical format, and possi-
bly scaling numerical features to ensure they are on a comparable range. Then, a regression
algorithm (common choices include Linear Regression, Decision Tree Regressors, or more com-
plex ensemble methods like Random Forest Regressors) is trained on this dataset. The model
learns the underlying relationship between the house’s features and its selling price from the
historical data. Once trained, this model can be used to predict the likely selling price for a
new house for which we know the features but not the price. Scikit-learn is again a go-to
library for implementing these regression models.

4.5.3 Clustering tasks

Clustering falls under the umbrella of unsupervised learning, where the goal is to find inher-
ent groupings or structures in data without having pre-defined labels for those groups. The
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objective is to group a set of input instances into clusters such that instances within the same
cluster are more similar to each other (based on their features) than they are to instances in
other clusters.

A common business application is customer segmentation. The problem is to identify distinct
groups of customers based on their characteristics or behaviors, such as their purchasing history
(e.g., items bought, frequency of purchases, total amount spent), their activity on a company’s
website, or their demographic information. The key here is that we don’t start by knowing
what these segments are; we want the algorithm to discover them.

The approach involves selecting relevant features that describe the customers and pre-
processing this data (e.g., scaling numerical features). Then, a clustering algorithm, such as
K-Means or Hierarchical Clustering, is applied. The algorithm iteratively groups customers
based on the similarity of their feature values. After the clusters are formed, the next
step is interpretation: analyzing the characteristics of the customers within each cluster to
understand what defines each segment (e.g., one cluster might represent “high-value, frequent
shoppers,” another “budget-conscious, occasional buyers,” and a third “newly acquired
customers”). These identified segments can then inform targeted marketing campaigns,
personalized product recommendations, or tailored customer service strategies. Scikit-learn
provides implementations of several widely used clustering algorithms.

4.5.4 Simple recommendation systems

Recommendation systems are pervasive in our digital lives, suggesting movies we might like,
products we might want to buy, or news articles we might find interesting. The core goal
is to predict the “rating” or “preference” a user would give to an item they have not yet
considered.

An elementary form of recommendation can be seen in suggestions like “Users who bought
product X also frequently bought product Y.” This type of recommendation often stems from
analyzing co-occurrence patterns in transaction data. The problem is to suggest relevant
additional products to an online shopper, perhaps while they are browsing or at the checkout
stage. The data required is the purchase history of many users — specifically, information about
which items were bought together in the same transactions.

A conceptual approach involves Association Rule Mining or basic Collaborative Filtering logic.
Association rule mining (using algorithms like Apriori) aims to discover interesting relation-
ships or associations among a set of items in a dataset. For example, it might find a rule like
“If a customer buys bread and butter, they are also likely to buy milk.” Collaborative filtering
works by finding users with similar tastes or items with similar appeal. Based on a user’s
current shopping cart content or their past purchase history, the system can then recommend
other items that are frequently associated with those items, according to the patterns learned
from the broader customer base. While building sophisticated, large-scale recommendation
systems is a complex field, the basic principles can be understood and even implemented for
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simpler cases using data manipulation tools like Pandas or specialized libraries like mlxtend
for association rule mining.

These elementary applications—classification, regression, clustering, and simple recommendations—
serve as powerful illustrations of how Al and DS techniques can be applied to extract valuable
patterns from data, make informed predictions, and group information in meaningful ways to
solve practical problems. They represent the foundational building blocks upon which more
complex and sophisticated Al systems are constructed in advanced studies and real-world,
large-scale deployments.

4.6 Unit review

1. Explain the primary role of the Pandas library in preparing data for an AI model. Why is
its DataFrame structure particularly useful for representing datasets that Al algorithms,
as discussed in texts like Russell & Norvig, learn from?

2. Describe three distinct types of data representations (e.g., structured, unstructured, semi-
structured). For each, provide a real-world example and name a Python tool or library
suitable for its initial processing or interaction.

3. Outline the key stages of the Data Science process pipeline. Justify the importance of
the “Data Pre-processing” stage for the successful application of Al algorithms, such as
those described by Khemani.

4. Define “Feature Scaling.” Explain why it is often a critical pre-processing step before ap-
plying certain machine learning algorithms (e.g., k-Nearest Neighbors or Support Vector
Machines) and name two common techniques for achieving it.

5. Distinguish clearly between a “classification” task and a “regression” task within the
context of supervised learning in Al. Provide a concrete example for each, illustrating
the type of output predicted.

6. What is “One-Hot Encoding”? Explain its purpose in data pre-processing and discuss a
scenario where it would be preferred over simple Label Encoding for a categorical feature
when preparing data for an AT model.

7. Briefly explain the concept of “clustering” as an unsupervised learning technique in Al.
How might the output of a clustering algorithm be practically useful for an Al system
or for deriving business insights?

8. You are given a dataset for an Al project with a numerical feature income (ranging
from $20,000 to $500,000) and another numerical feature years_of_education (ranging
from 8 to 20). If you were to use an Al algorithm sensitive to feature scales, what
pre-processing step would you apply to these features and why?

9. Imagine you are developing an Al model to predict house prices (a regression task).
During the “Evaluation” stage of the Data Science pipeline, you find your model predicts
very accurately for houses similar to those in your training data but poorly for houses
with slightly different characteristics. What is this issue likely called, and which stage
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

of the pipeline would you revisit to potentially improve feature representation or model
complexity?

How does the Scikit-learn library facilitate the practical application of “learning from
examples,” a core Al paradigm detailed in textbooks by Russell & Norvig and Khemani?
Mention at least two distinct functionalities it provides.

Consider an AT agent designed to understand and summarize news articles (unstructured
text data). Describe, at a high level, the challenge this data representation poses for
traditional Al algorithms that typically expect structured input.

Briefly outline two conceptual pre-processing steps that would be necessary to transform
unstructured text data (like news articles) into a format more amenable for an Al learning
algorithm (e.g., a classifier to determine the topic of the article).

Why is the initial “Business Understanding” or “Problem Definition” phase considered
so critical in the Data Science process pipeline, especially when the goal is to build a
useful Al application?

Describe a scenario where handling “missing values” in a dataset would be crucial before
training an Al model. Name two different methods for handling missing values and a
potential downside of one of them.

How do visualization tools like Matplotlib and Seaborn support the “Exploratory Data
Analysis (EDA)” phase of the Data Science pipeline, and why is EDA important before
committing to specific Al modeling techniques?

Denis Rothman’s “Al by Example” often uses Python. How do such practical examples
help in understanding the link between abstract Al algorithms (from theory books) and
their real-world implementation and behavior?

What is “Dimensionality Reduction” in the context of data pre-processing? Provide one
reason why a data scientist might want to reduce the dimensionality of a dataset before
building an AI model.

Explain why the Data Science process pipeline is often described as an “iterative” process
rather than a strictly linear one. Provide a specific example of why a team might need
to revisit an earlier stage from a later one.

If an AT system, as conceptualized by Russell & Norvig as a “rational agent,” needs to
learn from its environment, how does the quality of the “data” (representing percepts or
experiences) and its “pre-processing” impact the agent’s ability to learn effectively and
act rationally?

Discuss the importance of the “Evaluation” stage in the Data Science pipeline. What
are the risks of deploying an Al model that has not been rigorously evaluated on unseen
data?
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