5  Module 4- Multi-variable Calculus- Integration

Syllabus: Multivariable Calculus - Integration Double integrals (Cartesian) - Reversing the order of integration - Change of coordinates (Cartesian to polar) - Finding areas and volume using double integrals - Mass and centre of gravity of inhomogeneous laminas using double integral - Triple integrals - Volume calculated as triple integral - Triple integral in cylindrical and spherical coordinates (computations involving spheres and cylinders only).


5.1 Tutorial 8- Applications of Double Integrals

5.1.1 Problem 1

Temperature over a square chip (\(2\times2\) cm) is \[ T(x,y) = 100 - 5x^2 - 3y^2, \] with \(x,y\) in cm. Surface heat capacity per unit area is \(c = 0.02\ \text{J/cm}^2\!^\circ\text{C}\).
Total heat energy is \[ Q = c \iint_R T(x,y)\, dA,\qquad R=[0,2]\times[0,2]. \]

Step 1 — Set up the double integral

Write the integral explicitly (choose any convenient order; here integrate \(y\) first): \[ Q = c \int_{x=0}^{2}\int_{y=0}^{2} \bigl(100 - 5x^{2} - 3y^{2}\bigr)\,dy\,dx. \]

Step 2 — Compute the inner integral (with respect to \(y\))

For fixed \(x\),

\[ \begin{aligned} \int_{0}^{2} \bigl(100 - 5x^{2} - 3y^{2}\bigr)\,dy &= \int_{0}^{2} 100\,dy \;-\; \int_{0}^{2} 5x^{2}\,dy \;-\; \int_{0}^{2} 3y^{2}\,dy \\ &= 100\cdot(2) \;-\; 5x^{2}\cdot(2) \;-\; 3\cdot\left[\frac{y^{3}}{3}\right]_{0}^{2} \\ &= 200 - 10x^{2} - 3\cdot\frac{8}{3} \\ &= 200 - 10x^{2} - 8 \\ &= 192 - 10x^{2}. \end{aligned} \]

So the inner integration reduces the problem to a single integral in \(x\).

Step 3 — Compute the outer integral (with respect to \(x\))

Now integrate \(192 - 10x^{2}\) from \(0\) to \(2\):

\[ \begin{aligned} \iint_R T\,dA &= \int_{0}^{2} \bigl(192 - 10x^{2}\bigr)\,dx = \left[192x - 10\cdot\frac{x^{3}}{3}\right]_{0}^{2} \\ &= 192\cdot 2 - \frac{10}{3}\cdot 8 = 384 - \frac{80}{3} \\ &= \frac{1152 - 80}{3} = \frac{1072}{3}. \end{aligned} \]

Thus the double integral \(\iint_R T\,dA = \dfrac{1072}{3}\ \text{(°C·cm}^2\text{)}\).

Step 4 — Multiply by surface heat capacity \(c\)

Since \(c=\tfrac{1}{50} = 0.02\ \text{J/cm}^2\!^\circ\text{C}\),

\[ Q = c\cdot \frac{1072}{3} = \frac{1072}{3}\cdot\frac{1}{50} = \frac{1072}{150} = \frac{536}{75}. \]

Numeric value: \[ Q = \frac{536}{75}\ \text{J} \approx 7.14667\ \text{J}. \]

Answer: \(Q = \dfrac{536}{75}\ \text{J} \approx 7.1467\ \text{J}\).

Physical interpretation

The chip stores about \(7.15\) joules of thermal energy (over its top surface) under the modeled temperature distribution. The largest contribution to \(Q\) comes from the constant offset (\(100^\circ\)C) over the area; the quadratic terms reduce the total.

SymPy verification

Run the following in a Python environment (Jupyter / Quarto) to verify symbolically and numerically:

Code
import sympy as sp

# symbols
x, y, c = sp.symbols('x y c', real=True)
c_val = sp.Rational(1,50)  # 0.02

# temperature
T = 100 - 5*x**2 - 3*y**2

# double integral over R = [0,2]x[0,2]
integrand = T
area_integral = sp.integrate(sp.integrate(integrand, (y, 0, 2)), (x, 0, 2))
Q = sp.simplify(c_val * area_integral)

area_integral, Q, float(Q)
(1072/3, 536/75, 7.1466666666666665)

5.1.2 Problem 2

The electric potential in a plane is modeled by \[ V(x,y) = x^2 + y^2, \] over the triangular region \(R\) bounded by \(y=0\), \(y=x\), and \(x=1\).
Compute the total potential flux through the region: \[ \Phi = \iint_R V(x,y)\,dA . \]

Step 1 — Describe the region of integration

The triangle \(R\) is \[ R=\{(x,y)\mid 0\le x\le 1,\; 0\le y\le x\}. \] So a natural order is integrate \(y\) first (\(0\to x\)) and then \(x\) (\(0\to1\)).

Step 2 — Set up the double integral

\[ \Phi = \int_{x=0}^{1}\int_{y=0}^{x} (x^2 + y^2)\,dy\,dx. \]

Step 3 — Evaluate the inner integral (w.r.t. \(y\))

For fixed \(x\),

\[ \int_{0}^{x} (x^2 + y^2)\,dy = \int_{0}^{x} x^2\,dy + \int_{0}^{x} y^2\,dy = x^2\cdot x + \left[\frac{y^3}{3}\right]_{0}^{x} = x^3 + \frac{x^3}{3} = \frac{4}{3}x^3. \]

Step 4 — Evaluate the outer integral (w.r.t. \(x\))

\[ \begin{aligned} \Phi &= \int_{0}^{1} \frac{4}{3}x^3\,dx\\ &= \frac{4}{3}\cdot \left[\frac{x^4}{4}\right]_{0}^{1}\\ &= \frac{4}{3}\cdot \frac{1}{4}\\ &= \frac{1}{3}. \end{aligned} \]

Answer: \(\displaystyle \Phi = \frac{1}{3}.\)

Alternative: change the order of integration (verification)

If we integrate in the order \(dx\,dy\), describe \(R\) as \[ R=\{(x,y)\mid 0\le y\le 1,\; y\le x\le 1\} \] so \[ \Phi = \int_{y=0}^{1}\int_{x=y}^{1} (x^2 + y^2)\,dx\,dy. \]

Compute inner integral (w.r.t. \(x\)):

\[ \int_{x=y}^{1} (x^2 + y^2)\,dx = \left[\frac{x^3}{3} + y^2 x\right]_{x=y}^{1} = \left(\frac{1}{3} + y^2\right) - \left(\frac{y^3}{3} + y^3\right) = \frac{1}{3} + y^2 - \frac{4}{3}y^3. \]

Now integrate w.r.t. \(y\):

\[ \Phi = \int_{0}^{1} \left(\frac{1}{3} + y^2 - \frac{4}{3}y^3\right)\,dy = \left[\frac{y}{3} + \frac{y^3}{3} - \frac{4}{3}\cdot\frac{y^4}{4}\right]_{0}^{1} = \frac{1}{3} + \frac{1}{3} - \frac{1}{3} = \frac{1}{3}, \]

which confirms the previous result.

Physical interpretation

The integral \(\Phi=\iint_R (x^2+y^2)\,dA\) sums the potential density over the triangular region. The value \(\Phi=\tfrac{1}{3}\) (in the chosen units) represents the total “potential content” of that triangular patch. Because \(V\) increases with distance from the origin, regions farther from the origin contribute more to the total.

SymPy verification

Code
import sympy as sp

# symbols
x, y = sp.symbols('x y', real=True)

# integrand
V = x**2 + y**2

# order 1: dy then dx
phi1 = sp.integrate(sp.integrate(V, (y, 0, x)), (x, 0, 1))

# order 2: dx then dy
phi2 = sp.integrate(sp.integrate(V, (x, y, 1)), (y, 0, 1))

phi1_simpl = sp.simplify(phi1)
phi2_simpl = sp.simplify(phi2)

phi1_simpl, phi2_simpl, float(phi1_simpl)
(1/3, 1/3, 0.3333333333333333)

5.1.3 Problem 3

A square sensor array (\(1\times 1\)) receives light intensity \[ I(x,y) = e^{-x^2 - y^2},\qquad 0\le x\le 1,\;0\le y\le 1. \] Find the average light intensity over the array surface: \[ I_{\text{avg}}=\frac{1}{A}\iint\limits_R I(x,y)\,dA, \] where \(A\) is the area of \(R\).

Step 1 — Area of the region

The region \(R\) is the unit square, so \(A=1\cdot1=1\). Thus \[ I_{\text{avg}}=\iint\limits_{R} e^{-x^{2}-y^{2}}\,dA. \] (We have \(A=1\), so average = total integral.)

Step 2 — Use separability of the integrand

The integrand is separable: \[ \int\limits_{0}^{1}\int\limits_{0}^{1} e^{-x^{2}-y^{2}}\,dy\,dx = \left(\int\limits_{0}^{1} e^{-x^{2}}\,dx\right)\left(\int\limits_{0}^{1} e^{-y^{2}}\,dy\right) = \left(\int\limits_{0}^{1} e^{-t^{2}}\,dt\right)^{2}. \]

(Here we used the same dummy variable for both 1D integrals.)

Step 3 — Express the one-dimensional integral in terms of the error function

The Gaussian integral from \(0\) to \(1\) is expressed with the error function \(\operatorname{erf}\): \[ \int\limits_{0}^{1} e^{-t^{2}}\,dt = \frac{\sqrt{\pi}}{2}\,\operatorname{erf}(1). \]

Therefore the double integral is \[ \iint_{R} e^{-x^{2}-y^{2}}\,dA = \left(\frac{\sqrt{\pi}}{2}\,\operatorname{erf}(1)\right)^{2} = \frac{\pi}{4}\,\operatorname{erf}(1)^{2}. \]

Step 4 — Numerical value

Using known numerical values \(\operatorname{erf}(1)\approx 0.8427007929\) and \(\sqrt{\pi}/2\approx 0.8862269255\),

\[ \int_{0}^{1} e^{-t^{2}}\,dt \approx 0.7468241328, \]

so \[ I_{\text{avg}} = \left(0.7468241328\right)^{2} \approx 0.5577462854. \]

Answer: \(I_{\text{avg}} = \dfrac{\pi}{4}\,\operatorname{erf}(1)^{2} \approx 0.5577463.\)

Physical interpretation

The average intensity over the unit sensor is about \(0.558\) (in the same units as \(I\)). Because the Gaussian decays away from the origin, the center region contributes more, but over the unit square the total/average is reduced from the peak value \(I(0,0)=1\).

SymPy verification

Code
import sympy as sp

# symbols
x, y = sp.symbols('x y', real=True)

# integrand
I = sp.exp(-x**2 - y**2)

# double integral over unit square (separable)
inner = sp.integrate(sp.exp(-x**2), (x, 0, 1))
double = sp.simplify(inner**2)

# express in terms of erf
double_simpl = sp.simplify(double.rewrite(sp.erf))

# numeric value
numeric = float(sp.N(double, 12))

inner, double_simpl, numeric
(sqrt(pi)*erf(1)/2, pi*erf(1)**2/4, 0.5577462853510724)

5.1.4 Problem 4

Find the volume of the solid bounded below by the plane \(z=0\) and above by the surface \[ z = 4 - x^2 - y^2, \] over the region \(R\) in the first quadrant bounded by \(x=0\), \(y=0\), and the line \(x+y=2\) (i.e. \(x\ge0,\ y\ge0,\ x+y\le2\)).

Step 1 — Describe the region \(R\)

The triangular region \(R\) in the \(xy\)-plane is \[ R=\{(x,y)\mid 0\le y\le 2,\; 0\le x\le 2-y\}, \] or equivalently \(0\le x\le2,\;0\le y\le 2-x\). Either order is fine; here we integrate \(x\) first (inner integral), \(y\) second (outer integral).

Step 2 — Set up the double integral for volume

The volume is \[ V=\iint\limits_{R} (4 - x^2 - y^2)\,dA = \int\limits_{y=0}^{2}\int\limits_{x=0}^{2-y} \bigl(4 - x^2 - y^2\bigr)\,dx\,dy. \]

(We must have \(4-x^2-y^2\ge0\) over the region for the surface to lie above \(z=0\); here the maximum distance from origin in \(R\) is at \((2,0)\) or \((0,2)\) where \(4-x^2-y^2=0\), so the surface touches \(z=0\) at the triangle corners — the integrand is nonnegative on \(R\).)

Step 3 — Evaluate the inner integral (with respect to \(x\))

For fixed \(y\), \[ \begin{aligned} \int\limits_{0}^{2-y} \bigl(4 - x^2 - y^2\bigr)\,dx &= \int\limits_{0}^{2-y} 4\,dx \;-\; \int\limits_{0}^{2-y} x^2\,dx \;-\; \int\limits_{0}^{2-y} y^2\,dx \\ &= 4(2-y) \;-\; \left[\frac{x^3}{3}\right]_{0}^{2-y} \;-\; y^2(2-y) \\ &= 4(2-y) - \frac{(2-y)^3}{3} - y^2(2-y). \end{aligned} \]

You may expand and simplify before integrating in \(y\), or integrate the above expression directly.

Step 4 — Simplify the integrand for the outer integral

Compute (algebraic simplification): \[ \begin{aligned} 4(2-y) - \frac{(2-y)^3}{3} - y^2(2-y) &= \Bigl(8 - 4y\Bigr) - \frac{1}{3}(8 - 12y + 6y^2 - y^3) - (2y^2 - y^3) \\ &= 8 - 4y - \frac{8}{3} + 4y - 2y^2 + \frac{1}{3}y^3 - 2y^2 + y^3 \\ &= \left(8 - \frac{8}{3}\right) + \bigl(-4y+4y\bigr) + \bigl(-2y^2-2y^2\bigr) + \left(\frac{1}{3}y^3 + y^3\right) \\ &= \frac{16}{3} - 4y^2 + \frac{4}{3}y^3. \end{aligned} \]

So the outer integral becomes \[ V = \int\limits_{0}^{2} \left(\frac{16}{3} - 4y^2 + \frac{4}{3}y^3\right)\,dy. \]

Step 5 — Evaluate the outer integral

Integrate term-by-term:

\[ \begin{aligned} V &= \left[\frac{16}{3}y - \frac{4}{3}y^3 + \frac{4}{3}\cdot\frac{y^4}{4}\right]_{0}^{2} = \left[\frac{16}{3}y - \frac{4}{3}y^3 + \frac{1}{3}y^4\right]_{0}^{2} \\ &= \frac{16}{3}\cdot 2 - \frac{4}{3}\cdot 8 + \frac{1}{3}\cdot 16 = \frac{32}{3} - \frac{32}{3} + \frac{16}{3} = \frac{16}{3}. \end{aligned} \]

Answer:
\[ \boxed{V = \dfrac{16}{3}} \] (in the appropriate cubic units, e.g. cubic centimeters if \(x,y\) were in cm).

Physical interpretation

The solid is the portion of the paraboloid \(z=4-x^2-y^2\) above the triangular base in the first quadrant. The volume \(\tfrac{16}{3}\approx 5.333\ldots\) is the total amount of space under the curved surface over that triangular footprint.

SymPy verification

Code
import sympy as sp

# declare symbols
x, y = sp.symbols('x y', real=True)

# integrand
z = 4 - x**2 - y**2

# do the double integral over R: 0 <= y <= 2, 0 <= x <= 2 - y
V = sp.integrate(sp.integrate(z, (x, 0, 2 - y)), (y, 0, 2))
sp.simplify(V)

\(\displaystyle \frac{16}{3}\)

5.1.5 Problem 5

Evaluate \[ I = \int\limits_{0}^{2}\int\limits_{x^{2}}^{2x} (x+y)\,dy\,dx \] by sketching the region of integration, changing the order of integration, and verifying that both orders give the same result.

Step 1 — Describe and sketch the region of integration

The region \(R\) is the set of points \((x,y)\) with \[ 0 \le x \le 2,\qquad x^{2} \le y \le 2x. \]

Boundaries are the parabola \(y=x^{2}\) and the line \(y=2x\), intersecting at \(x=0\) and \(x=2\) (since \(x^{2}=2x \Rightarrow x(x-2)=0\)).
On the \(y\)-axis the minimum \(y\) is \(0\) and the maximum \(y\) on \(R\) is at the intersection point \((2,4)\), so \(0\le y\le 4\) overall.

For a fixed \(y\) (when changing the order), \(x\) runs between the line solved for \(x\) (\(x = y/2\)) and the parabola solved for \(x\) (\(x=\sqrt{y}\)). Thus the region can be described as \[ R=\{(x,y)\mid 0\le y\le 4,\; \frac{y}{2}\le x\le \sqrt{y}\}. \]

(Geometric check: for \(0\le y\le4\) we have \(y/2 \le \sqrt{y}\), so the interval for \(x\) is nonempty.)

A quick sketch helps: plot \(y=x^{2}\) and \(y=2x\) and shade the area between them from \(x=0\) to \(x=2\).

Step 2 — Evaluate the integral in the original order (\(dy\) then \(dx\))

Compute the inner integral first: \[ \begin{aligned} \int\limits_{x^{2}}^{2x} (x+y)\,dy &= \left[xy + \tfrac{1}{2}y^{2}\right]_{y=x^{2}}^{y=2x} \\ &= \bigl(x(2x) + \tfrac{1}{2}(2x)^{2}\bigr) - \bigl(x\cdot x^{2} + \tfrac{1}{2}x^{4}\bigr) \\ &= \bigl(2x^{2} + 2x^{2}\bigr) - \bigl(x^{3} + \tfrac{1}{2}x^{4}\bigr) \\ &= 4x^{2} - x^{3} - \tfrac{1}{2}x^{4}. \end{aligned} \]

Now integrate with respect to \(x\) from \(0\) to \(2\): \[ \begin{aligned} I &= \int\limits_{0}^{2} \Bigl(4x^{2} - x^{3} - \tfrac{1}{2}x^{4}\Bigr)\,dx \\ &= \left[\tfrac{4x^{3}}{3} - \tfrac{x^{4}}{4} - \tfrac{1}{2}\cdot\tfrac{x^{5}}{5}\right]_{0}^{2} \\ &= \frac{4\cdot 8}{3} - \frac{16}{4} - \frac{1}{10}\cdot 32 \\ &= \frac{32}{3} - 4 - \frac{32}{10} \\ &= \frac{160 - 60 - 48}{15} = \frac{52}{15}. \end{aligned} \]

So \[ \boxed{I = \dfrac{52}{15}.} \]

Step 3 — Change the order of integration (\(dx\) then \(dy\)) and evaluate

Using the \(y\)-first description \(0\le y\le 4\) and \(y/2 \le x \le \sqrt{y}\), write \[ I = \int\limits_{y=0}^{4}\int\limits_{x=y/2}^{\sqrt{y}} (x+y)\,dx\,dy. \]

Evaluate the inner integral (w.r.t. \(x\)):

\[ \begin{aligned} \int\limits_{y/2}^{\sqrt{y}} (x+y)\,dx &= \left[\tfrac{x^{2}}{2} + yx\right]_{x=y/2}^{x=\sqrt{y}} \\ &= \left(\tfrac{y}{2} + y\sqrt{y}\right) - \left(\tfrac{(y/2)^{2}}{2} + y\cdot\tfrac{y}{2}\right) \\ &= \tfrac{y}{2} + y^{3/2} - \left(\tfrac{y^{2}}{8} + \tfrac{y^{2}}{2}\right) \\ &= \tfrac{y}{2} + y^{3/2} - \tfrac{5}{8}y^{2}. \end{aligned} \]

Now integrate with respect to \(y\) from \(0\) to \(4\): \[ \begin{aligned} I &= \int\limits_{0}^{4} \left(\tfrac{y}{2} + y^{3/2} - \tfrac{5}{8}y^{2}\right)\,dy \\ &= \left[\tfrac{y^{2}}{4} + \tfrac{2}{5}y^{5/2} - \tfrac{5}{24}y^{3}\right]_{0}^{4} \\ &= \frac{16}{4} + \frac{2}{5}\cdot 4^{5/2} - \frac{5}{24}\cdot 64 \\ &= 4 + \frac{2}{5}\cdot 32 - \frac{320}{24} \\ &= 4 + \frac{64}{5} - \frac{40}{3} \\ &= \frac{60 + 192 - 200}{15} = \frac{52}{15}, \end{aligned} \]

which matches the result from the original order.

Step 4 — Interpretation

Both integration orders produce the same value \(I=\tfrac{52}{15}\approx 3.4667\). Changing the order required correctly expressing the \(x\)-limits as functions of \(y\) (here \(x=y/2\) to \(x=\sqrt{y}\)) — this step comes from solving the boundary equations \(y=2x\) and \(y=x^{2}\) for \(x\).

SymPy verification

Code
import sympy as sp

# symbols
x, y = sp.symbols('x y', real=True)

# integrand
f = x + y

# original order: dy then dx
I1 = sp.integrate(sp.integrate(f, (y, x**2, 2*x)), (x, 0, 2))

# swapped order: dx then dy (y from 0 to 4, x from y/2 to sqrt(y))
I2 = sp.integrate(sp.integrate(f, (x, y/2, sp.sqrt(y))), (y, 0, 4))

sp.simplify(I1), sp.simplify(I2), float(I1)
(52/15, 52/15, 3.466666666666667)

5.1.6 Problem 6

The joint function is \[ f(x,y) = \frac{3}{8}(x^2 + y^2), \] defined on the unit square \(0\le x\le1,\;0\le y\le1\). Compute:

  1. The total probability \(\displaystyle P_{\text{total}}=\iint\limits_{[0,1]^2} f(x,y)\,dA\) (check whether it equals \(1\)).
  2. The probability \(\displaystyle P\{X+Y\le 1\}=\iint\limits_{x+y\le1} f(x,y)\,dA\).

(Sketch the triangular region \(x\ge 0,y\ge 0,x+y\le 1\) for part 2.)

Part 1 — Total probability on the unit square

Set up the integral.
\[ P_{\text{total}}=\int\limits_{x=0}^{1}\int\limits_{y=0}^{1} \frac{3}{8}(x^2 + y^2)\,dy\,dx. \]

Exploit linearity / separability.
Split the double integral:

\[ \begin{aligned} \iint\limits_{[0,1]^2} (x^2+y^2)\,dA &= \int\limits_0^1\int\limits_0^1 x^2\,dy\,dx + \int\limits_0^1\int\limits_0^1 y^2\,dy\,dx \\ &= \int\limits_0^1 x^2\biggl(\int\limits_0^1 dy\biggr)dx + \int\limits_0^1 \biggl(\int\limits_0^1 y^2 dy\biggr)dx \\ &= \int\limits_0^1 x^2\,dx + \int\limits_0^1 y^2\,dy = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}. \end{aligned} \]

Multiply by the prefactor \(\tfrac{3}{8}\): \[ P_{\text{total}} = \frac{3}{8}\cdot\frac{2}{3} = \frac{1}{4} = 0.25. \]

Conclusion: \(P_{\text{total}}=\dfrac{1}{4}\neq 1\).
Therefore \(f(x,y)\) as given is not a normalized probability density on \([0,1]^2\) (it integrates to \(1/4\)). To make it a valid pdf one would divide \(f\) by \(1/4\) (i.e. multiply by \(4\)) or choose the normalization constant accordingly.

**Part 2 — Probability that \(X+Y\le 1\)*

Region: the triangle \(R = \{(x,y)\mid 0\le x\le1,\ 0\le y\le 1-x\}\).

Set up the integral (integrate \(y\) first): \[ P\{X+Y\le1\} = \int\limits_{x=0}^{1}\int\limits_{y=0}^{1-x} \frac{3}{8}(x^2 + y^2)\,dy\,dx. \]

Evaluate inner integral (w.r.t. \(y\)): \[ \begin{aligned} \int\limits_{0}^{1-x} (x^2 + y^2)\,dy &= x^2(1-x) + \left[\frac{y^3}{3}\right]_{0}^{1-x} \\ &= x^2(1-x) + \frac{(1-x)^3}{3}. \end{aligned} \]

Now integrate w.r.t. \(x\): \[ \begin{aligned} \iint\limits_{R} (x^2+y^2)\,dA &= \int\limits_{0}^{1} \left( x^2(1-x) + \frac{(1-x)^3}{3} \right)\,dx. \end{aligned} \]

Compute the two parts separately:

  • \(\displaystyle \int\limits_{0}^{1} x^2(1-x)\,dx = \int\limits_0^1 (x^2 - x^3)\,dx = \left[\frac{x^3}{3} - \frac{x^4}{4}\right]_0^1 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.\)

  • \(\displaystyle \int\limits_{0}^{1} \frac{(1-x)^3}{3}\,dx = \frac{1}{3}\int\limits_0^1 (1-x)^3 dx = \frac{1}{3}\cdot\frac{1}{4} = \frac{1}{12}.\)

So \[ \iint\limits_{R} (x^2+y^2)\,dA = \frac{1}{12} + \frac{1}{12} = \frac{1}{6}. \]

Multiply by the prefactor \(\tfrac{3}{8}\): \[ P\{X+Y\le1\} = \frac{3}{8}\cdot\frac{1}{6} = \frac{3}{48} = \frac{1}{16} = 0.0625. \]

Answer: \(P\{X+Y\le1\}=\dfrac{1}{16}\ (\)approximately \(0.0625)\).

Interpretation

  • The joint function integrates to \(1/4\) over the unit square, so it is not normalized. The probability \(P\{X+Y\le1\}=\tfrac{1}{16}\) is the mass of the given (unnormalized) density over the triangle. If you first normalized \(f\) by dividing by \(1/4\) (i.e. using \(f_{\text{norm}}=4f\)), then the normalized probabilities would be \(1\) (total) and \(4\cdot\tfrac{1}{16}=\tfrac{1}{4}\) respectively.

SymPy verification

Code
import sympy as sp

# symbols
x, y = sp.symbols('x y', real=True)

# density
f = sp.Rational(3,8)*(x**2 + y**2)

# Part 1: total probability over unit square
P_total = sp.integrate(sp.integrate(f, (y, 0, 1)), (x, 0, 1))
# Part 2: probability X+Y <= 1 (triangle)
P_triangle = sp.integrate(sp.integrate(f, (y, 0, 1 - x)), (x, 0, 1))

sp.simplify(P_total), sp.simplify(P_triangle), float(P_total), float(P_triangle)
(1/4, 1/16, 0.25, 0.0625)