Syllabus: Multivariable Calculus - Integration Double integrals (Cartesian) - Reversing the order of integration - Change of coordinates (Cartesian to polar) - Finding areas and volume using double integrals - Mass and centre of gravity of inhomogeneous laminas using double integral - Triple integrals - Volume calculated as triple integral - Triple integral in cylindrical and spherical coordinates (computations involving spheres and cylinders only).
5.1 Tutorial 8- Applications of Double Integrals
5.1.1 Problem 1
Temperature over a square chip (\(2\times2\) cm) is \[
T(x,y) = 100 - 5x^2 - 3y^2,
\] with \(x,y\) in cm. Surface heat capacity per unit area is \(c = 0.02\ \text{J/cm}^2\!^\circ\text{C}\).
Total heat energy is \[
Q = c \iint_R T(x,y)\, dA,\qquad R=[0,2]\times[0,2].
\]
Step 1 — Set up the double integral
Write the integral explicitly (choose any convenient order; here integrate \(y\) first): \[
Q = c \int_{x=0}^{2}\int_{y=0}^{2} \bigl(100 - 5x^{2} - 3y^{2}\bigr)\,dy\,dx.
\]
Step 2 — Compute the inner integral (with respect to \(y\))
The chip stores about \(7.15\) joules of thermal energy (over its top surface) under the modeled temperature distribution. The largest contribution to \(Q\) comes from the constant offset (\(100^\circ\)C) over the area; the quadratic terms reduce the total.
SymPy verification
Run the following in a Python environment (Jupyter / Quarto) to verify symbolically and numerically:
Code
import sympy as sp# symbolsx, y, c = sp.symbols('x y c', real=True)c_val = sp.Rational(1,50) # 0.02# temperatureT =100-5*x**2-3*y**2# double integral over R = [0,2]x[0,2]integrand = Tarea_integral = sp.integrate(sp.integrate(integrand, (y, 0, 2)), (x, 0, 2))Q = sp.simplify(c_val * area_integral)area_integral, Q, float(Q)
(1072/3, 536/75, 7.1466666666666665)
5.1.2 Problem 2
The electric potential in a plane is modeled by \[
V(x,y) = x^2 + y^2,
\] over the triangular region \(R\) bounded by \(y=0\), \(y=x\), and \(x=1\).
Compute the total potential flux through the region: \[
\Phi = \iint_R V(x,y)\,dA .
\]
Step 1 — Describe the region of integration
The triangle \(R\) is \[
R=\{(x,y)\mid 0\le x\le 1,\; 0\le y\le x\}.
\] So a natural order is integrate \(y\) first (\(0\to x\)) and then \(x\) (\(0\to1\)).
Alternative: change the order of integration (verification)
If we integrate in the order \(dx\,dy\), describe \(R\) as \[
R=\{(x,y)\mid 0\le y\le 1,\; y\le x\le 1\}
\] so \[
\Phi = \int_{y=0}^{1}\int_{x=y}^{1} (x^2 + y^2)\,dx\,dy.
\]
The integral \(\Phi=\iint_R (x^2+y^2)\,dA\) sums the potential density over the triangular region. The value \(\Phi=\tfrac{1}{3}\) (in the chosen units) represents the total “potential content” of that triangular patch. Because \(V\) increases with distance from the origin, regions farther from the origin contribute more to the total.
SymPy verification
Code
import sympy as sp# symbolsx, y = sp.symbols('x y', real=True)# integrandV = x**2+ y**2# order 1: dy then dxphi1 = sp.integrate(sp.integrate(V, (y, 0, x)), (x, 0, 1))# order 2: dx then dyphi2 = sp.integrate(sp.integrate(V, (x, y, 1)), (y, 0, 1))phi1_simpl = sp.simplify(phi1)phi2_simpl = sp.simplify(phi2)phi1_simpl, phi2_simpl, float(phi1_simpl)
(1/3, 1/3, 0.3333333333333333)
5.1.3 Problem 3
A square sensor array (\(1\times 1\)) receives light intensity \[
I(x,y) = e^{-x^2 - y^2},\qquad 0\le x\le 1,\;0\le y\le 1.
\] Find the average light intensity over the array surface: \[
I_{\text{avg}}=\frac{1}{A}\iint\limits_R I(x,y)\,dA,
\] where \(A\) is the area of \(R\).
Step 1 — Area of the region
The region \(R\) is the unit square, so \(A=1\cdot1=1\). Thus \[
I_{\text{avg}}=\iint\limits_{R} e^{-x^{2}-y^{2}}\,dA.
\] (We have \(A=1\), so average = total integral.)
Step 2 — Use separability of the integrand
The integrand is separable: \[
\int\limits_{0}^{1}\int\limits_{0}^{1} e^{-x^{2}-y^{2}}\,dy\,dx
= \left(\int\limits_{0}^{1} e^{-x^{2}}\,dx\right)\left(\int\limits_{0}^{1} e^{-y^{2}}\,dy\right)
= \left(\int\limits_{0}^{1} e^{-t^{2}}\,dt\right)^{2}.
\]
(Here we used the same dummy variable for both 1D integrals.)
Step 3 — Express the one-dimensional integral in terms of the error function
The Gaussian integral from \(0\) to \(1\) is expressed with the error function \(\operatorname{erf}\): \[
\int\limits_{0}^{1} e^{-t^{2}}\,dt = \frac{\sqrt{\pi}}{2}\,\operatorname{erf}(1).
\]
Therefore the double integral is \[
\iint_{R} e^{-x^{2}-y^{2}}\,dA
= \left(\frac{\sqrt{\pi}}{2}\,\operatorname{erf}(1)\right)^{2}
= \frac{\pi}{4}\,\operatorname{erf}(1)^{2}.
\]
Step 4 — Numerical value
Using known numerical values \(\operatorname{erf}(1)\approx 0.8427007929\) and \(\sqrt{\pi}/2\approx 0.8862269255\),
The average intensity over the unit sensor is about \(0.558\) (in the same units as \(I\)). Because the Gaussian decays away from the origin, the center region contributes more, but over the unit square the total/average is reduced from the peak value \(I(0,0)=1\).
SymPy verification
Code
import sympy as sp# symbolsx, y = sp.symbols('x y', real=True)# integrandI = sp.exp(-x**2- y**2)# double integral over unit square (separable)inner = sp.integrate(sp.exp(-x**2), (x, 0, 1))double = sp.simplify(inner**2)# express in terms of erfdouble_simpl = sp.simplify(double.rewrite(sp.erf))# numeric valuenumeric =float(sp.N(double, 12))inner, double_simpl, numeric
Find the volume of the solid bounded below by the plane \(z=0\) and above by the surface \[
z = 4 - x^2 - y^2,
\] over the region \(R\) in the first quadrant bounded by \(x=0\), \(y=0\), and the line \(x+y=2\) (i.e. \(x\ge0,\ y\ge0,\ x+y\le2\)).
Step 1 — Describe the region \(R\)
The triangular region \(R\) in the \(xy\)-plane is \[
R=\{(x,y)\mid 0\le y\le 2,\; 0\le x\le 2-y\},
\] or equivalently \(0\le x\le2,\;0\le y\le 2-x\). Either order is fine; here we integrate \(x\) first (inner integral), \(y\) second (outer integral).
Step 2 — Set up the double integral for volume
The volume is \[
V=\iint\limits_{R} (4 - x^2 - y^2)\,dA
= \int\limits_{y=0}^{2}\int\limits_{x=0}^{2-y} \bigl(4 - x^2 - y^2\bigr)\,dx\,dy.
\]
(We must have \(4-x^2-y^2\ge0\) over the region for the surface to lie above \(z=0\); here the maximum distance from origin in \(R\) is at \((2,0)\) or \((0,2)\) where \(4-x^2-y^2=0\), so the surface touches \(z=0\) at the triangle corners — the integrand is nonnegative on \(R\).)
Step 3 — Evaluate the inner integral (with respect to \(x\))
Answer: \[
\boxed{V = \dfrac{16}{3}}
\] (in the appropriate cubic units, e.g. cubic centimeters if \(x,y\) were in cm).
Physical interpretation
The solid is the portion of the paraboloid \(z=4-x^2-y^2\) above the triangular base in the first quadrant. The volume \(\tfrac{16}{3}\approx 5.333\ldots\) is the total amount of space under the curved surface over that triangular footprint.
SymPy verification
Code
import sympy as sp# declare symbolsx, y = sp.symbols('x y', real=True)# integrandz =4- x**2- y**2# do the double integral over R: 0 <= y <= 2, 0 <= x <= 2 - yV = sp.integrate(sp.integrate(z, (x, 0, 2- y)), (y, 0, 2))sp.simplify(V)
\(\displaystyle \frac{16}{3}\)
5.1.5 Problem 5
Evaluate \[
I = \int\limits_{0}^{2}\int\limits_{x^{2}}^{2x} (x+y)\,dy\,dx
\] by sketching the region of integration, changing the order of integration, and verifying that both orders give the same result.
Step 1 — Describe and sketch the region of integration
The region \(R\) is the set of points \((x,y)\) with \[
0 \le x \le 2,\qquad x^{2} \le y \le 2x.
\]
Boundaries are the parabola \(y=x^{2}\) and the line \(y=2x\), intersecting at \(x=0\) and \(x=2\) (since \(x^{2}=2x \Rightarrow x(x-2)=0\)).
On the \(y\)-axis the minimum \(y\) is \(0\) and the maximum \(y\) on \(R\) is at the intersection point \((2,4)\), so \(0\le y\le 4\) overall.
For a fixed \(y\) (when changing the order), \(x\) runs between the line solved for \(x\) (\(x = y/2\)) and the parabola solved for \(x\) (\(x=\sqrt{y}\)). Thus the region can be described as \[
R=\{(x,y)\mid 0\le y\le 4,\; \frac{y}{2}\le x\le \sqrt{y}\}.
\]
(Geometric check: for \(0\le y\le4\) we have \(y/2 \le \sqrt{y}\), so the interval for \(x\) is nonempty.)
A quick sketch helps: plot \(y=x^{2}\) and \(y=2x\) and shade the area between them from \(x=0\) to \(x=2\).
Step 2 — Evaluate the integral in the original order (\(dy\) then \(dx\))
Now integrate with respect to \(x\) from \(0\) to \(2\): \[
\begin{aligned}
I &= \int\limits_{0}^{2} \Bigl(4x^{2} - x^{3} - \tfrac{1}{2}x^{4}\Bigr)\,dx \\
&= \left[\tfrac{4x^{3}}{3} - \tfrac{x^{4}}{4} - \tfrac{1}{2}\cdot\tfrac{x^{5}}{5}\right]_{0}^{2} \\
&= \frac{4\cdot 8}{3} - \frac{16}{4} - \frac{1}{10}\cdot 32 \\
&= \frac{32}{3} - 4 - \frac{32}{10} \\
&= \frac{160 - 60 - 48}{15} = \frac{52}{15}.
\end{aligned}
\]
So \[
\boxed{I = \dfrac{52}{15}.}
\]
Step 3 — Change the order of integration (\(dx\) then \(dy\)) and evaluate
Using the \(y\)-first description \(0\le y\le 4\) and \(y/2 \le x \le \sqrt{y}\), write \[
I = \int\limits_{y=0}^{4}\int\limits_{x=y/2}^{\sqrt{y}} (x+y)\,dx\,dy.
\]
Both integration orders produce the same value \(I=\tfrac{52}{15}\approx 3.4667\). Changing the order required correctly expressing the \(x\)-limits as functions of \(y\) (here \(x=y/2\) to \(x=\sqrt{y}\)) — this step comes from solving the boundary equations \(y=2x\) and \(y=x^{2}\) for \(x\).
SymPy verification
Code
import sympy as sp# symbolsx, y = sp.symbols('x y', real=True)# integrandf = x + y# original order: dy then dxI1 = sp.integrate(sp.integrate(f, (y, x**2, 2*x)), (x, 0, 2))# swapped order: dx then dy (y from 0 to 4, x from y/2 to sqrt(y))I2 = sp.integrate(sp.integrate(f, (x, y/2, sp.sqrt(y))), (y, 0, 4))sp.simplify(I1), sp.simplify(I2), float(I1)
(52/15, 52/15, 3.466666666666667)
5.1.6 Problem 6
The joint function is \[
f(x,y) = \frac{3}{8}(x^2 + y^2),
\] defined on the unit square \(0\le x\le1,\;0\le y\le1\). Compute:
The total probability \(\displaystyle P_{\text{total}}=\iint\limits_{[0,1]^2} f(x,y)\,dA\) (check whether it equals \(1\)).
The probability \(\displaystyle P\{X+Y\le 1\}=\iint\limits_{x+y\le1} f(x,y)\,dA\).
(Sketch the triangular region \(x\ge 0,y\ge 0,x+y\le 1\) for part 2.)
Part 1 — Total probability on the unit square
Set up the integral. \[
P_{\text{total}}=\int\limits_{x=0}^{1}\int\limits_{y=0}^{1} \frac{3}{8}(x^2 + y^2)\,dy\,dx.
\]
Exploit linearity / separability.
Split the double integral:
Multiply by the prefactor \(\tfrac{3}{8}\): \[
P_{\text{total}} = \frac{3}{8}\cdot\frac{2}{3} = \frac{1}{4} = 0.25.
\]
Conclusion:\(P_{\text{total}}=\dfrac{1}{4}\neq 1\).
Therefore \(f(x,y)\) as given is not a normalized probability density on \([0,1]^2\) (it integrates to \(1/4\)). To make it a valid pdf one would divide \(f\) by \(1/4\) (i.e. multiply by \(4\)) or choose the normalization constant accordingly.
The joint function integrates to \(1/4\) over the unit square, so it is not normalized. The probability \(P\{X+Y\le1\}=\tfrac{1}{16}\) is the mass of the given (unnormalized) density over the triangle. If you first normalized \(f\) by dividing by \(1/4\) (i.e. using \(f_{\text{norm}}=4f\)), then the normalized probabilities would be \(1\) (total) and \(4\cdot\tfrac{1}{16}=\tfrac{1}{4}\) respectively.
SymPy verification
Code
import sympy as sp# symbolsx, y = sp.symbols('x y', real=True)# densityf = sp.Rational(3,8)*(x**2+ y**2)# Part 1: total probability over unit squareP_total = sp.integrate(sp.integrate(f, (y, 0, 1)), (x, 0, 1))# Part 2: probability X+Y <= 1 (triangle)P_triangle = sp.integrate(sp.integrate(f, (y, 0, 1- x)), (x, 0, 1))sp.simplify(P_total), sp.simplify(P_triangle), float(P_total), float(P_triangle)